ترغب بنشر مسار تعليمي؟ اضغط هنا

Thurston norms of tunnel number-one manifolds

119   0   0.0 ( 0 )
 نشر من قبل Nicholas Vlamis
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The Thurston norm of a 3-manifold measures the complexity of surfaces representing two-dimensional homology classes. We study the possible unit balls of Thurston norms of 3-manifolds $M$ with $b_1(M) = 2$, and whose fundamental groups admit presentations with two generators and one relator. We show that even among this special class, there are 3-manifolds such that the unit ball of the Thurston norm has arbitrarily many faces.



قيم البحث

اقرأ أيضاً

149 - Abdoul Karim Sane 2020
Thurston norms are invariants of 3-manifolds defined on their second homology vector spaces, and understanding the shape of their dual unit ball is a (widely) open problem. W. Thurston showed that every symmetric polygon in Z^2, whose vertices satisf y a parity property, is the dual unit ball of a Thurston norm on a 3-manifold. However, it is not known if the parity property on the vertices of polytopes is a sufficient condition in higher dimension or if their are polytopes, with mod 2 congruent vertices, that cannot be realized as dual unit balls of Thurston norms. In this article, we provide a family of polytopes in Z^2g that can be realized as dual unit balls of Thurston norms on 3-manifolds. These polytopes come from intersection norms on oriented closed surfaces and this article widens the bridge between these two norms.
A knot k in a closed orientable 3-manifold is called nonsimple if the exterior of k possesses a properly embedded essential surface of nonnegative Euler characteristic. We show that if k is a nonsimple prime tunnel number one knot in a lens space M ( where M does not contain any embedded Klein bottles), then k is a (1,1) knot. Elements of the proof include handle addition and Dehn filling results/techniques of Jaco, Eudave-Munoz and Gordon as well as structure results of Schultens on the Heegaard splittings of graph manifolds.
187 - Takahiro Kitayama 2021
We present an overview of the study of the Thurston norm, introduced by W. P. Thurston in the seminal paper A norm for the homology of 3-manifolds (written in 1976 and published in 1986). We first review fundamental properties of the Thurston norm of a 3-manifold, including a construction of codimension-1 taut foliations from norm-minimizing embedded surfaces, established by D. Gabai. In the main part we describe relationships between the Thurston norm and other topological invariants of a 3-manifold: the Alexander polynomial and its various generalizations, Reidemeister torsion, the Seiberg-Witten invariant, Heegaard Floer homology, the complexity of triangulations and the profinite completion of the fundamental group. Some conjectures and questions on related topics are also collected. The final version of this paper will appear as a chapter in the book In the tradition of Thurston, II, edited by K. Ohshika and A. Papadopoulos (Springer, 2022).
In Dunfields catalog of the hyperbolic manifolds in the SnapPy census which are complements of L-space knots in $S^3$, we determine that $22$ have tunnel number $2$ while the remaining all have tunnel number $1$. Notably, these $22$ manifolds contain $9$ asymmetric L-space knot complements. Furthermore, using SnapPy and KLO we find presentations of these $22$ knots as closures of positive braids that realize the Morton-Franks-Williams bound on braid index. The smallest of these has genus $12$ and braid index $4$.
212 - Shigenori Matsumoto 2013
Denote by $DC(M)_0$ the identity component of the group of compactly supported $C^infty$ diffeomorphisms of a connected $C^infty$ manifold $M$, and by $HR$ the group of the homeomorphisms of $R$. We show that if $M$ is a closed manifold which fibers over $S^m$ ($mgeq 2$), then any homomorphism from $DC(M)_0$ to $HR$ is trivial.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا