ﻻ يوجد ملخص باللغة العربية
Polymer composite electrolytes of Nafion and phosphotungstic acid (PWA) are fabricated and analyzed using electrochemical strain microscopy (ESM) and conductive atomic force microscopy (C-AFM) to visualize hydrophilic ion channels near the surface, which are composed of water and sulfonic acid groups. The results indicate that the fibrillar objects in ESM image, without significant changes in topography, are hydrophilic ion channels and additional ion channels formed by interaction between PWA and sulfonic groups in Nafion. In this study, the buried ion channels lying under the surface are probed as well as the inlet and outlet of the channels on the surface through combined use of ESM and C-AFM. The results further enhance the understanding of ionic conduction in composite polymer electrolytes in various fields.
The vertical stacking of van der Waals (vdW) materials introduces a new degree of freedom to the research of two-dimensional (2D) systems. The interlayer coupling strongly influences the band structure of the heterostructures, resulting in novel prop
We report quantitative measurements of nanoscale permittivity and conductivity using tuning-fork (TF) based microwave impedance microscopy (MIM). The system is operated under the driving amplitude modulation mode, which ensures satisfactory feedback
Many promising applications of single crystal diamond and its color centers as sensor platform and in photonics require free-standing membranes with a thickness ranging from several micrometers to the few 100 nm range. In this work, we present an app
The control of optically driven high-frequency strain waves in nanostructured systems is an essential ingredient for the further development of nanophononics. However, broadly applicable experimental means to quantitatively map such structural distor
Strain engineering has arisen as a powerful technique to tune the electronic and optical properties of two-dimensional semiconductors like molybdenum disulfide (MoS2). Although several theoretical works predicted that biaxial strain would be more eff