ترغب بنشر مسار تعليمي؟ اضغط هنا

READ: Recursive Autoencoders for Document Layout Generation

360   0   0.0 ( 0 )
 نشر من قبل Akshay Gadi Patil
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Layout is a fundamental component of any graphic design. Creating large varieties of plausible document layouts can be a tedious task, requiring numerous constraints to be satisfied, including local ones relating different semantic elements and global constraints on the general appearance and spacing. In this paper, we present a novel framework, coined READ, for REcursive Autoencoders for Document layout generation, to generate plausible 2D layouts of documents in large quantities and varieties. First, we devise an exploratory recursive method to extract a structural decomposition of a single document. Leveraging a dataset of documents annotated with labeled bounding boxes, our recursive neural network learns to map the structural representation, given in the form of a simple hierarchy, to a compact code, the space of which is approximated by a Gaussian distribution. Novel hierarchies can be sampled from this space, obtaining new document layouts. Moreover, we introduce a combinatorial metric to measure structural similarity among document layouts. We deploy it to show that our method is able to generate highly variable and realistic layouts. We further demonstrate the utility of our generated layouts in the context of standard detection tasks on documents, showing that detection performance improves when the training data is augmented with generated documents whose layouts are produced by READ.



قيم البحث

اقرأ أيضاً

We introduce a learning framework for automated floorplan generation which combines generative modeling using deep neural networks and user-in-the-loop designs to enable human users to provide sparse design constraints. Such constraints are represent ed by a layout graph. The core component of our learning framework is a deep neural network, Graph2Plan, which converts a layout graph, along with a building boundary, into a floorplan that fulfills both the layout and boundary constraints. Given an input building boundary, we allow a user to specify room counts and other layout constraints, which are used to retrieve a set of floorplans, with their associated layout graphs, from a database. For each retrieved layout graph, along with the input boundary, Graph2Plan first generates a corresponding raster floorplan image, and then a refined set of boxes representing the rooms. Graph2Plan is trained on RPLAN, a large-scale dataset consisting of 80K annotated floorplans. The network is mainly based on convolutional processing over both the layout graph, via a graph neural network (GNN), and the input building boundary, as well as the raster floorplan images, via conventional image convolution.
Document layout comprises both structural and visual (eg. font-sizes) information that is vital but often ignored by machine learning models. The few existing models which do use layout information only consider textual contents, and overlook the exi stence of contents in other modalities such as images. Additionally, spatial interactions of presented contents in a layout were never really fully exploited. To bridge this gap, we parse a document into content blocks (eg. text, table, image) and propose a novel layout-aware multimodal hierarchical framework, LAMPreT, to model the blocks and the whole document. Our LAMPreT encodes each block with a multimodal transformer in the lower-level and aggregates the block-level representations and connections utilizing a specifically designed transformer at the higher-level. We design hierarchical pretraining objectives where the lower-level model is trained similarly to multimodal grounding models, and the higher-level model is trained with our proposed novel layout-aware objectives. We evaluate the proposed model on two layout-aware tasks -- text block filling and image suggestion and show the effectiveness of our proposed hierarchical architecture as well as pretraining techniques.
We present document domain randomization (DDR), the first successful transfer of convolutional neural networks (CNNs) trained only on graphically rendered pseudo-paper pages to real-world document segmentation. DDR renders pseudo-document pages by mo deling randomized textual and non-textual contents of interest, with user-defined layout and font styles to support joint learning of fine-grained classes. We demonstrate competitive results using our DDR approach to extract nine document classes from the benchmark CS-150 and papers published in two domains, namely annual meetings of Association for Computational Linguistics (ACL) and IEEE Visualization (VIS). We compare DDR to conditions of style mismatch, fewer or more noisy samples that are more easily obtained in the real world. We show that high-fidelity semantic information is not necessary to label semantic classes but style mismatch between train and test can lower model accuracy. Using smaller training samples had a slightly detrimental effect. Finally, network models still achieved high test accuracy when correct labels are diluted towards confusing labels; this behavior hold across several classes.
416 - Xingjiao Wu , Tianlong Ma , Xin Li 2021
Document layout analysis (DLA) aims to divide a document image into different types of regions. DLA plays an important role in the document content understanding and information extraction systems. Exploring a method that can use less data for effect ive training contributes to the development of DLA. We consider a Human-in-the-loop (HITL) collaborative intelligence in the DLA. Our approach was inspired by the fact that the HITL push the model to learn from the unknown problems by adding a small amount of data based on knowledge. The HITL select key samples by using confidence. However, using confidence to find key samples is not suitable for DLA tasks. We propose the Key Samples Selection (KSS) method to find key samples in high-level tasks (semantic segmentation) more accurately through agent collaboration, effectively reducing costs. Once selected, these key samples are passed to human beings for active labeling, then the model will be updated with the labeled samples. Hence, we revisited the learning system from reinforcement learning and designed a sample-based agent update strategy, which effectively improves the agents ability to accept new samples. It achieves significant improvement results in two benchmarks (DSSE-200 (from 77.1% to 86.3%) and CS-150 (from 88.0% to 95.6%)) by using 10% of labeled data.
Modeling layout is an important first step for graphic design. Recently, methods for generating graphic layouts have progressed, particularly with Generative Adversarial Networks (GANs). However, the problem of specifying the locations and sizes of d esign elements usually involves constraints with respect to element attributes, such as area, aspect ratio and reading-order. Automating attribute conditional graphic layouts remains a complex and unsolved problem. In this paper, we introduce Attribute-conditioned Layout GAN to incorporate the attributes of design elements for graphic layout generation by forcing both the generator and the discriminator to meet attribute conditions. Due to the complexity of graphic designs, we further propose an element dropout method to make the discriminator look at partial lists of elements and learn their local patterns. In addition, we introduce various loss designs following different design principles for layout optimization. We demonstrate that the proposed method can synthesize graphic layouts conditioned on different element attributes. It can also adjust well-designed layouts to new sizes while retaining elements original reading-orders. The effectiveness of our method is validated through a user study.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا