ﻻ يوجد ملخص باللغة العربية
Extrasolar satellites are generally too small to be detected by nominal searches. By analogy to the most active body in the Solar System, Io, we describe how sodium (Na I) and potassium (K I) $textit{gas}$ could be a signature of the geological activity venting from an otherwise hidden exo-Io. Analyzing $sim$ a dozen close-in gas giants hosting robust alkaline detections, we show that an Io-sized satellite can be stable against orbital decay below a planetary tidal $mathcal{Q}_p lesssim 10^{11}$. This tidal energy is focused into the satellite driving a $sim 10^{5 pm 2}$ higher mass loss rate than Ios supply to Jupiters Na exosphere, based on simple atmospheric loss estimates. The remarkable consequence is that several exo-Io column densities are on average $textit{more than sufficient}$ to provide the $sim$ 10$^{10 pm 1}$ Na cm$^{-2}$ required by the equivalent width of exoplanet transmission spectra. Furthermore, the benchmark observations of both Jupiters extended ($sim 1000$ R$_J$) Na exosphere and Jupiters atmosphere in transmission spectroscopy yield similar Na column densities that are purely exogenic in nature. As a proof of concept, we fit the high-altitude Na at WASP 49-b with an ionization-limited cloud similar to the observed Na profile about Io. Moving forward, we strongly encourage time-dependent ingress and egress monitoring along with spectroscopic searches for other volcanic volatiles.
New instruments and telescopes, such as SPIRou, CARMENES and TESS, will increase manyfold the number of known planets orbiting M dwarfs. To guide future radio observations, we estimate radio emission from known M-dwarf planets using the empirical rad
While the Earth and Moon are generally similar in composition, a notable difference between the two is the apparent depletion in moderately volatile elements in lunar samples. This is often attributed to the formation process of the Moon and demonstr
Using a 3D GCM, we create dynamical model atmospheres of a representative transiting giant exoplanet, HD 209458b. We post-process these atmospheres with an opacity code to obtain transit radius spectra during the primary transit. Using a spectral atm
Planets are known to orbit giant stars, yet there is a shortage of planets orbiting within ~0.5 AU (P<100 days). First-ascent giants have not expanded enough to engulf such planets, but tidal forces can bring planets to the surface of the star far be
We present here observational evidence that the snowline plays a significant role in the formation and evolution of gas giant planets. When considering the population of observed exoplanets, we find a boundary in mass-semimajor axis space that sugges