ترغب بنشر مسار تعليمي؟ اضغط هنا

Heterogeneous Domain Adaptation via Soft Transfer Network

165   0   0.0 ( 0 )
 نشر من قبل Yuan Yao
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Heterogeneous domain adaptation (HDA) aims to facilitate the learning task in a target domain by borrowing knowledge from a heterogeneous source domain. In this paper, we propose a Soft Transfer Network (STN), which jointly learns a domain-shared classifier and a domain-invariant subspace in an end-to-end manner, for addressing the HDA problem. The proposed STN not only aligns the discriminative directions of domains but also matches both the marginal and conditional distributions across domains. To circumvent negative transfer, STN aligns the conditional distributions by using the soft-label strategy of unlabeled target data, which prevents the hard assignment of each unlabeled target data to only one category that may be incorrect. Further, STN introduces an adaptive coefficient to gradually increase the importance of the soft-labels since they will become more and more accurate as the number of iterations increases. We perform experiments on the transfer tasks of image-to-image, text-to-image, and text-to-text. Experimental results testify that the STN significantly outperforms several state-of-the-art approaches.

قيم البحث

اقرأ أيضاً

One crucial aspect of partial domain adaptation (PDA) is how to select the relevant source samples in the shared classes for knowledge transfer. Previous PDA methods tackle this problem by re-weighting the source samples based on their high-level inf ormation (deep features). However, since the domain shift between source and target domains, only using the deep features for sample selection is defective. We argue that it is more reasonable to additionally exploit the pixel-level information for PDA problem, as the appearance difference between outlier source classes and target classes is significantly large. In this paper, we propose a reinforced transfer network (RTNet), which utilizes both high-level and pixel-level information for PDA problem. Our RTNet is composed of a reinforced data selector (RDS) based on reinforcement learning (RL), which filters out the outlier source samples, and a domain adaptation model which minimizes the domain discrepancy in the shared label space. Specifically, in the RDS, we design a novel reward based on the reconstruct errors of selected source samples on the target generator, which introduces the pixel-level information to guide the learning of RDS. Besides, we develope a state containing high-level information, which used by the RDS for sample selection. The proposed RDS is a general module, which can be easily integrated into existing DA models to make them fit the PDA situation. Extensive experiments indicate that RTNet can achieve state-of-the-art performance for PDA tasks on several benchmark datasets.
Domain adaptation (DA) aims to transfer discriminative features learned from source domain to target domain. Most of DA methods focus on enhancing feature transferability through domain-invariance learning. However, source-learned discriminability it self might be tailored to be biased and unsafely transferable by spurious correlations, emph{i.e.}, part of source-specific features are correlated with category labels. We find that standard domain-invariance learning suffers from such correlations and incorrectly transfers the source-specifics. To address this issue, we intervene in the learning of feature discriminability using unlabeled target data to guide it to get rid of the domain-specific part and be safely transferable. Concretely, we generate counterfactual features that distinguish the domain-specifics from domain-sharable part through a novel feature intervention strategy. To prevent the residence of domain-specifics, the feature discriminability is trained to be invariant to the mutations in the domain-specifics of counterfactual features. Experimenting on typical emph{one-to-one} unsupervised domain adaptation and challenging domain-agnostic adaptation tasks, the consistent performance improvements of our method over state-of-the-art approaches validate that the learned discriminative features are more safely transferable and generalize well to novel domains.
107 - Yuan Yao , Xutao Li , Yu Zhang 2020
Heterogeneous domain adaptation (HDA) tackles the learning of cross-domain samples with both different probability distributions and feature representations. Most of the existing HDA studies focus on the single-source scenario. In reality, however, i t is not uncommon to obtain samples from multiple heterogeneous domains. In this article, we study the multisource HDA problem and propose a conditional weighting adversarial network (CWAN) to address it. The proposed CWAN adversarially learns a feature transformer, a label classifier, and a domain discriminator. To quantify the importance of different source domains, CWAN introduces a sophisticated conditional weighting scheme to calculate the weights of the source domains according to the conditional distribution divergence between the source and target domains. Different from existing weighting schemes, the proposed conditional weighting scheme not only weights the source domains but also implicitly aligns the conditional distributions during the optimization process. Experimental results clearly demonstrate that the proposed CWAN performs much better than several state-of-the-art methods on four real-world datasets.
There are a variety of Domain Adaptation (DA) scenarios subject to label sets and domain configurations, including closed-set and partial-set DA, as well as multi-source and multi-target DA. It is notable that existing DA methods are generally design ed only for a specific scenario, and may underperform for scenarios they are not tailored to. To this end, this paper studies Versatile Domain Adaptation (VDA), where one method can handle several different DA scenarios without any modification. Towards this goal, a more general inductive bias other than the domain alignment should be explored. We delve into a missing piece of existing methods: class confusion, the tendency that a classifier confuses the predictions between the correct and ambiguous classes for target examples, which is common in different DA scenarios. We uncover that reducing such pairwise class confusion leads to significant transfer gains. With this insight, we propose a general loss function: Minimum Class Confusion (MCC). It can be characterized as (1) a non-adversarial DA method without explicitly deploying domain alignment, enjoying faster convergence speed; (2) a versatile approach that can handle four existing scenarios: Closed-Set, Partial-Set, Multi-Source, and Multi-Target DA, outperforming the state-of-the-art methods in these scenarios, especially on one of the largest and hardest datasets to date (7.3% on DomainNet). Its versatility is further justified by two scenarios proposed in this paper: Multi-Source Partial DA and Multi-Target Partial DA. In addition, it can also be used as a general regularizer that is orthogonal and complementary to a variety of existing DA methods, accelerating convergence and pushing these readily competitive methods to stronger ones. Code is available at https://github.com/thuml/Versatile-Domain-Adaptation.
Domain adaptation is an important technique to alleviate performance degradation caused by domain shift, e.g., when training and test data come from different domains. Most existing deep adaptation methods focus on reducing domain shift by matching m arginal feature distributions through deep transformations on the input features, due to the unavailability of target domain labels. We show that domain shift may still exist via label distribution shift at the classifier, thus deteriorating model performances. To alleviate this issue, we propose an approximate joint distribution matching scheme by exploiting prediction uncertainty. Specifically, we use a Bayesian neural network to quantify prediction uncertainty of a classifier. By imposing distribution matching on both features and labels (via uncertainty), label distribution mismatching in source and target data is effectively alleviated, encouraging the classifier to produce consistent predictions across domains. We also propose a few techniques to improve our method by adaptively reweighting domain adaptation loss to achieve nontrivial distribution matching and stable training. Comparisons with state of the art unsupervised domain adaptation methods on three popular benchmark datasets demonstrate the superiority of our approach, especially on the effectiveness of alleviating negative transfer.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا