ترغب بنشر مسار تعليمي؟ اضغط هنا

Physics Informed Data Driven model for Flood Prediction: Application of Deep Learning in prediction of urban flood development

203   0   0.0 ( 0 )
 نشر من قبل Kun Qian
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

Flash floods in urban areas occur with increasing frequency. Detecting these floods would greatlyhelp alleviate human and economic losses. However, current flood prediction methods are eithertoo slow or too simplified to capture the flood development in details. Using Deep Neural Networks,this work aims at boosting the computational speed of a physics-based 2-D urban flood predictionmethod, governed by the Shallow Water Equation (SWE). Convolutional Neural Networks(CNN)and conditional Generative Adversarial Neural Networks(cGANs) are applied to extract the dy-namics of flood from the data simulated by a Partial Differential Equation(PDE) solver. Theperformance of the data-driven model is evaluated in terms of Mean Squared Error(MSE) andPeak Signal to Noise Ratio(PSNR). The deep learning-based, data-driven flood prediction modelis shown to be able to provide precise real-time predictions of flood development



قيم البحث

اقرأ أيضاً

361 - Syed Kabir 2020
Most of the two-dimensional (2D) hydraulic/hydrodynamic models are still computationally too demanding for real-time applications. In this paper, an innovative modelling approach based on a deep convolutional neural network (CNN) method is presented for rapid prediction of fluvial flood inundation. The CNN model is trained using outputs from a 2D hydraulic model (i.e. LISFLOOD-FP) to predict water depths. The pre-trained model is then applied to simulate the January 2005 and December 2015 floods in Carlisle, UK. The CNN predictions are compared favourably with the outputs produced by LISFLOOD-FP. The performance of the CNN model is further confirmed by benchmarking against a support vector regression (SVR) method. The results show that the CNN model outperforms SVR by a large margin. The CNN model is highly accurate in capturing flooded cells as indicated by several quantitative assessment matrices. The estimated error for reproducing maximum flood depth is 0 ~ 0.2 meters for the 2005 event and 0 ~ 0.5 meters for the 2015 event at over 99% of the cells covering the computational domain. The proposed CNN method offers great potential for real-time flood modelling/forecasting considering its simplicity, superior performance and computational efficiency.
Background: Floods are the most common natural disaster in the world, affecting the lives of hundreds of millions. Flood forecasting is therefore a vitally important endeavor, typically achieved using physical water flow simulations, which rely on ac curate terrain elevation maps. However, such simulations, based on solving partial differential equations, are computationally prohibitive on a large scale. This scalability issue is commonly alleviated using a coarse grid representation of the elevation map, though this representation may distort crucial terrain details, leading to significant inaccuracies in the simulation. Contributions: We train a deep neural network to perform physics-informed downsampling of the terrain map: we optimize the coarse grid representation of the terrain maps, so that the flood prediction will match the fine grid solution. For the learning process to succeed, we configure a dataset specifically for this task. We demonstrate that with this method, it is possible to achieve a significant reduction in computational cost, while maintaining an accurate solution. A reference implementation accompanies the paper as well as documentation and code for dataset reproduction.
The present paper proposes a physics-informed super-resolution (SR) model based on a convolutional neural network and applies it to the near-surface temperature in urban areas with the scaling factor of 4. The SR model incorporates a skip connection, a channel attention mechanism, and separated feature extractors for the inputs of temperature, building height, downward shortwave radiation, and horizontal velocity. We train the SR model with sets of low-resolution (LR) and high-resolution (HR) images from building-resolving large-eddy simulations (LESs) in an urban city. The generalization capability of the SR model is confirmed with LESs in another city. The estimated HR temperature fields are more accurate than those of the bicubic interpolation and image SR model that takes only the temperature as input. Except for the temperature input, the building height is the most important to reconstruct the HR temperature and enables the SR model to reduce errors in temperature near building boundaries. The analysis of attention weights indicates that the importance of building height increases as the downward shortwave radiation becomes larger. The contrast between sun and shade is strengthened with the increase in solar radiation, which may affect the temperature distribution. The short inference time suggests the potential of the proposed physics-informed SR model to facilitate a real-time HR forecast in metropolitan areas by combining it with an LR building-resolving LES model.
139 - Houpu Yao , Yi Gao , Yongming Liu 2020
An innovative physics-guided learning algorithm for predicting the mechanical response of materials and structures is proposed in this paper. The key concept of the proposed study is based on the fact that physics models are governed by Partial Diffe rential Equation (PDE), and its loading/ response mapping can be solved using Finite Element Analysis (FEA). Based on this, a special type of deep convolutional neural network (DCNN) is proposed that takes advantage of our prior knowledge in physics to build data-driven models whose architectures are of physics meaning. This type of network is named as FEA-Net and is used to solve the mechanical response under external loading. Thus, the identification of a mechanical system parameters and the computation of its responses are treated as the learning and inference of FEA-Net, respectively. Case studies on multi-physics (e.g., coupled mechanical-thermal analysis) and multi-phase problems (e.g., composite materials with random micro-structures) are used to demonstrate and verify the theoretical and computational advantages of the proposed method.
The full future of the sixth generation will develop a fully data-driven that provide terabit rate per second, and adopt an average of 1000+ massive number of connections per person in 10 years 2030 virtually instantaneously. Data-driven for ultra-re liable and low latency communication is a new service paradigm provided by a new application of future sixth-generation wireless communication and network architecture, involving 100+ Gbps data rates with one millisecond latency. The key constraint is the amount of computing power available to spread massive data and well-designed artificial neural networks. Artificial Intelligence provides a new technique to design wireless networks by apply learning, predicting, and make decisions to manage the stream of big data training individuals, which provides more the capacity to transform that expert learning to develop the performance of wireless networks. We study the developing technologies that will be the driving force are artificial intelligence, communication systems to guarantee low latency. This paper aims to discuss the efficiency of the developing network and alleviate the great challenge for application scenarios and study Holographic radio, enhanced wireless channel coding, enormous Internet of Things integration, and haptic communication for virtual and augmented reality provide new services on the 6G network. Furthermore, improving a multi-level architecture for ultra-reliable and low latency in deep Learning allows for data-driven AI and 6G networks for device intelligence, as well as allowing innovations based on effective learning capabilities. These difficulties must be solved in order to meet the needs of future smart networks. Furthermore, this research categorizes various unexplored research gaps between machine learning and the sixth generation.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا