ﻻ يوجد ملخص باللغة العربية
Any theory amenable to scientific inquiry must have testable consequences. This minimal criterion is uniquely challenging for the study of consciousness, as we do not know if it is possible to confirm via observation from the outside whether or not a physical system knows what it feels like to have an inside - a challenge referred to as the hard problem of consciousness. To arrive at a theory of consciousness, the hard problem has motivated the development of phenomenological approaches that adopt assumptions of what properties consciousness has based on first-hand experience and, from these, derive the physical processes that give rise to these properties. A leading theory adopting this approach is Integrated Information Theory (IIT), which assumes our subjective experience is a unified whole, subsequently yielding a requirement for physical feedback as a necessary condition for consciousness. Here, we develop a mathematical framework to assess the validity of this assumption by testing it in the context of isomorphic physical systems with and without feedback. The isomorphism allows us to isolate changes in $Phi$ without affecting the size or functionality of the original system. Indeed, we show that the only mathematical difference between a conscious system with $Phi>0$ and an isomorphic philosophical zombies with $Phi=0$ is a permutation of the binary labels used to internally represent functional states. This implies $Phi$ is sensitive to functionally arbitrary aspects of a particular labeling scheme, with no clear justification in terms of phenomenological differences. In light of this, we argue any quantitative theory of consciousness, including IIT, should be invariant under isomorphisms if it is to avoid the existence of isomorphic philosophical zombies and the epistemological problems they pose.
In an effort to develop the foundations for a non-stochastic theory of information, the notion of $delta$-mutual information between uncertain variables is introduced as a generalization of Nairs non-stochastic information functional. Several propert
Despite of the known gap from the Shannons capacity, several standards are still employing QAM or star shape constellations, mainly due to the existing low complexity detectors. In this paper, we investigate the low complexity detection for a family
Although the gulf between the theory and practice in Information Systems is much lamented, few researchers have offered a way forward except through a number of (failed) attempts to develop a single systematic theory for Information Systems. In this
The 10th Asia-Europe workshop in Concepts in Information Theory and Communications AEW10 was held in Boppard, Germany on June 21-23, 2017. It is based on a longstanding cooperation between Asian and European scientists. The first workshop was held in
We offer a new approach to the information decomposition problem in information theory: given a target random variable co-distributed with multiple source variables, how can we decompose the mutual information into a sum of non-negative terms that qu