ﻻ يوجد ملخص باللغة العربية
Despite of the known gap from the Shannons capacity, several standards are still employing QAM or star shape constellations, mainly due to the existing low complexity detectors. In this paper, we investigate the low complexity detection for a family of QAM isomorphic constellations. These constellations are known to perform very close to the peak-power limited capacity, outperforming the DVB-S2X standard constellations. The proposed strategy is to first remap the received signals to the QAM constellation using the existing isomorphism and then break the log likelihood ratio computations to two one dimensional PAM constellations. Gains larger than 0.6 dB with respect to QAM can be obtained over the peak power limited channels without any increase in detection complexity. Our scheme also provides a systematic way to design constellations with low complexity one dimensional detectors. Several open problems are discussed at the end of the paper.
A posteriori probability (APP) and max-log APP detection is widely used in soft-input soft-output detection. In contrast to bijective modulation schemes, there are important differences when applying these algorithms to non-bijective symbol constella
In this paper, we present a low-complexity joint detection-decoding algorithm for nonbinary LDPC codedmodulation systems. The algorithm combines hard-decision decoding using the message-passing strategy with the signal detector in an iterative manner
Faster-than-Nyquist (FTN) signaling is a promising non-orthogonal pulse modulation technique that can improve the spectral efficiency (SE) of next generation communication systems at the expense of higher detection complexity to remove the introduced
Faster-than-Nyquist (FTN) signaling is a promising non-orthogonal physical layer transmission technique to improve the spectral efficiency of future communication systems but at the expense of intersymbol-interference (ISI). In this paper, we investi
Motivated by applications in reliable and secure communication, we address the problem of tiling (or partitioning) a finite constellation in $mathbb{Z}_{2^L}^n$ by subsets, in the case that the constellation does not possess an abelian group structur