ترغب بنشر مسار تعليمي؟ اضغط هنا

Wasserstein Distributionally Robust Optimization: Theory and Applications in Machine Learning

130   0   0.0 ( 0 )
 نشر من قبل Viet Anh Nguyen
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

Many decision problems in science, engineering and economics are affected by uncertain parameters whose distribution is only indirectly observable through samples. The goal of data-driven decision-making is to learn a decision from finitely many training samples that will perform well on unseen test samples. This learning task is difficult even if all training and test samples are drawn from the same distribution---especially if the dimension of the uncertainty is large relative to the training sample size. Wasserstein distributionally robust optimization seeks data-driven decisions that perform well under the most adverse distribution within a certain Wasserstein distance from a nominal distribution constructed from the training samples. In this tutorial we will argue that this approach has many conceptual and computational benefits. Most prominently, the optimal decisions can often be computed by solving tractable convex optimization problems, and they enjoy rigorous out-of-sample and asymptotic consistency guarantees. We will also show that Wasserstein distributionally robust optimization has interesting ramifications for statistical learning and motivates new approaches for fundamental learning tasks such as classification, regression, maximum likelihood estimation or minimum mean square error estimation, among others.

قيم البحث

اقرأ أيضاً

238 - Chaosheng Dong , Bo Zeng 2020
Inverse multiobjective optimization provides a general framework for the unsupervised learning task of inferring parameters of a multiobjective decision making problem (DMP), based on a set of observed decisions from the human expert. However, the pe rformance of this framework relies critically on the availability of an accurate DMP, sufficient decisions of high quality, and a parameter space that contains enough information about the DMP. To hedge against the uncertainties in the hypothetical DMP, the data, and the parameter space, we investigate in this paper the distributionally robust approach for inverse multiobjective optimization. Specifically, we leverage the Wasserstein metric to construct a ball centered at the empirical distribution of these decisions. We then formulate a Wasserstein distributionally robust inverse multiobjective optimization problem (WRO-IMOP) that minimizes a worst-case expected loss function, where the worst case is taken over all distributions in the Wasserstein ball. We show that the excess risk of the WRO-IMOP estimator has a sub-linear convergence rate. Furthermore, we propose the semi-infinite reformulations of the WRO-IMOP and develop a cutting-plane algorithm that converges to an approximate solution in finite iterations. Finally, we demonstrate the effectiveness of our method on both a synthetic multiobjective quadratic program and a real world portfolio optimization problem.
In the paper, we propose an effective and efficient Compositional Federated Learning (ComFedL) algorithm for solving a new compositional Federated Learning (FL) framework, which frequently appears in many machine learning problems with a hierarchical structure such as distributionally robust federated learning and model-agnostic meta learning (MAML). Moreover, we study the convergence analysis of our ComFedL algorithm under some mild conditions, and prove that it achieves a fast convergence rate of $O(frac{1}{sqrt{T}})$, where $T$ denotes the number of iteration. To the best of our knowledge, our algorithm is the first work to bridge federated learning with composition stochastic optimization. In particular, we first transform the distributionally robust FL (i.e., a minimax optimization problem) into a simple composition optimization problem by using KL divergence regularization. At the same time, we also first transform the distribution-agnostic MAML problem (i.e., a minimax optimization problem) into a simple composition optimization problem. Finally, we apply two popular machine learning tasks, i.e., distributionally robust FL and MAML to demonstrate the effectiveness of our algorithm.
Recent development in the data-driven decision science has seen great advances in individualized decision making. Given data with individual covariates, treatment assignments and outcomes, policy makers best individualized treatment rule (ITR) that m aximizes the expected outcome, known as the value function. Many existing methods assume that the training and testing distributions are the same. However, the estimated optimal ITR may have poor generalizability when the training and testing distributions are not identical. In this paper, we consider the problem of finding an optimal ITR from a restricted ITR class where there is some unknown covariate changes between the training and testing distributions. We propose a novel distributionally robust ITR (DR-ITR) framework that maximizes the worst-case value function across the values under a set of underlying distributions that are close to the training distribution. The resulting DR-ITR can guarantee the performance among all such distributions reasonably well. We further propose a calibrating procedure that tunes the DR-ITR adaptively to a small amount of calibration data from a target population. In this way, the calibrated DR-ITR can be shown to enjoy better generalizability than the standard ITR based on our numerical studies.
This paper proposes SplitSGD, a new dynamic learning rate schedule for stochastic optimization. This method decreases the learning rate for better adaptation to the local geometry of the objective function whenever a stationary phase is detected, tha t is, the iterates are likely to bounce at around a vicinity of a local minimum. The detection is performed by splitting the single thread into two and using the inner product of the gradients from the two threads as a measure of stationarity. Owing to this simple yet provably valid stationarity detection, SplitSGD is easy-to-implement and essentially does not incur additional computational cost than standard SGD. Through a series of extensive experiments, we show that this method is appropriate for both convex problems and training (non-convex) neural networks, with performance compared favorably to other stochastic optimization methods. Importantly, this method is observed to be very robust with a set of default parameters for a wide range of problems and, moreover, yields better generalization performance than other adaptive gradient methods such as Adam.
We propose kernel distributionally robust optimization (Kernel DRO) using insights from the robust optimization theory and functional analysis. Our method uses reproducing kernel Hilbert spaces (RKHS) to construct a wide range of convex ambiguity set s, which can be generalized to sets based on integral probability metrics and finite-order moment bounds. This perspective unifies multiple existing robust and stochastic optimization methods. We prove a theorem that generalizes the classical duality in the mathematical problem of moments. Enabled by this theorem, we reformulate the maximization with respect to measures in DRO into the dual program that searches for RKHS functions. Using universal RKHSs, the theorem applies to a broad class of loss functions, lifting common limitations such as polynomial losses and knowledge of the Lipschitz constant. We then establish a connection between DRO and stochastic optimization with expectation constraints. Finally, we propose practical algorithms based on both batch convex solvers and stochastic functional gradient, which apply to general optimization and machine learning tasks.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا