ﻻ يوجد ملخص باللغة العربية
Simultaneous control of structural and physical properties via applied electrical current poses a key, new research topic and technological significance. Studying the spin-orbit-coupled antiferromagnet Ca2RuO4, with 3% Mn doping to weaken the violent first-order transition at 357 K for more robust measurements, we find that a small applied electrical current couples to the lattice by significantly reducing its orthorhombicity and octahedral rotations, concurrently diminishing the 125 K- antiferromagnetic transition and inducing a new, orbital order below 80 K. Our effort to establish a phase diagram reveals a critical regime near a current density of 0.15 A/cm2 that separates the vanishing antiferromagnetic order and the new orbital order. Further increasing current density (> 1 A/cm2) enhances competitions between relevant interactions in a metastable manner, leading to a peculiar glassy behavior above 80 K. The coupling between the lattice and nonequilibrium driven current is interpreted theoretically in terms of t2g orbital occupancies. The current-controlled lattice is the driving force of the observed novel phenomena.
Li2RuO3 undergoes a structural transition at a relatively high temperature of 550 K with a distinct dimerization of Ru-Ru bonds on the otherwise isotropic honeycomb lattice. It exhibits a unique herringbone dimerization pattern with a largest ever re
Discontinuous phase transitions out of equilibrium can be characterized by the behavior of macroscopic stochastic currents. But while much is known about the the average current, the situation is much less understood for higher statistics. In this pa
It was suggested that the two consecutive metamagnetic transitions and the large residual resistivity discovered in Sr$_3$Ru$_2$O$_7$ can be understood via the nematic order and its domains in a single layer system. However, a recently reported aniso
Ruthenium compounds play prominent roles in materials research ranging from oxide electronics to catalysis, and serve as a platform for fundamental concepts such as spin-triplet superconductivity, Kitaev spin-liquids, and solid-state analogues of the
We investigate the quantum mechanical origin of resistive phase transitions in solids driven by a constant electric field in the vicinity of a metal-insulator transition. We perform a nonequilibrium mean-field analysis of a driven-dissipative anti-fe