ﻻ يوجد ملخص باللغة العربية
We investigate the quantum mechanical origin of resistive phase transitions in solids driven by a constant electric field in the vicinity of a metal-insulator transition. We perform a nonequilibrium mean-field analysis of a driven-dissipative anti-ferromagnet, which we solve analytically for the most part. We find that the insulator-to-metal transition (IMT) and the metal-to-insulator transition (MIT) proceed by two distinct electronic mechanisms: Landau-Zener processes, and the destabilization of metallic state by Joule heating, respectively. However, we show that both regimes can be unified in a common effective thermal description, where the effective temperature $T_{rm eff}$ depends on the state of the system. This explains recent experimental measurements in which the hot-electron temperature at the IMT was found to match the equilibrium transition temperature. Our analytic approach enables us to formulate testable predictions on the non-analytic behavior of $I$-$V$ relation near the insulator-to-metal transition. Building on these successes, we propose an effective Ginzburg-Landau theory which paves the way to incorporating spatial fluctuations, and to bringing the theory closer to a realistic description of the resistive switchings in correlated materials.
Nonequilibrium dynamical mean-field theory (DMFT) is developed for the case of the charge-density-wave ordered phase. We consider the spinless Falicov-Kimball model which can be solved exactly. This strongly correlated system is then placed in an uni
We derive an exact mapping from the action of nonequilibrium dynamical mean-field theory (DMFT) to a single-impurity Anderson model (SIAM) with time-dependent parameters, which can be solved numerically by exact diagonalization. The representability
Nonequilibrium dynamical mean-field theory (DMFT) solves correlated lattice models by obtaining their local correlation functions from an effective model consisting of a single impurity in a self-consistently determined bath. The recently developed m
The dynamical mean-field theory (DMFT) is a widely applicable approximation scheme for the investigation of correlated quantum many-particle systems on a lattice, e.g., electrons in solids and cold atoms in optical lattices. In particular, the combin
Theories of photoinduced phase transitions have developed along with the progress in experimental studies, especially concerning their nonlinear characters and transition dynamics. At an early stage, paths from photoinduced local structural distortio