ﻻ يوجد ملخص باللغة العربية
Quantum many-body systems (QMBs) are some of the most challenging physical systems to simulate numerically. Methods involving approximations for tensor network (TN) contractions have proven to be viable alternatives to algorithms such as quantum Monte Carlo or simulated annealing. However, these methods are cumbersome, difficult to implement, and often have significant limitations in their accuracy and efficiency when considering systems in more than one dimension. In this paper, we explore the exact computation of TN contractions on two-dimensional geometries and present a heuristic improvement of TN contraction that reduces the computing time, the amount of memory, and the communication time. We run our algorithm for the Ising model using memory optimized x1.32x large instances on Amazon Web Services (AWS) Elastic Compute Cloud (EC2). Our results show that cloud computing is a viable alternative to supercomputers for this class of scientific applications.
Coupling a quantum many-body system to an external environment dramatically changes its dynamics and offers novel possibilities not found in closed systems. Of special interest are the properties of the steady state of such open quantum many-body sys
We study the spectral statistics of spatially-extended many-body quantum systems with on-site Abelian symmetries or local constraints, focusing primarily on those with conserved dipole and higher moments. In the limit of large local Hilbert space dim
Artificial Neural Networks were recently shown to be an efficient representation of highly-entangled many-body quantum states. In practical applications, neural-network states inherit numerical schemes used in Variational Monte Carlo, most notably th
Contrary to the conventional wisdom in Hermitian systems, a continuous quantum phase transition between gapped phases is shown to occur without closing the energy gap $Delta$ in non-Hermitian quantum many-body systems. Here, the relevant length scale
We study the entanglement of purification (EoP), a measure of total correlation between two subsystems $A$ and $B$, for free scalar field theory on a lattice and the transverse-field Ising model by numerical methods. In both of these models, we find