ترغب بنشر مسار تعليمي؟ اضغط هنا

Continuous Phase Transition without Gap Closing in Non-Hermitian Quantum Many-Body Systems

113   0   0.0 ( 0 )
 نشر من قبل Norifumi Matsumoto
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Contrary to the conventional wisdom in Hermitian systems, a continuous quantum phase transition between gapped phases is shown to occur without closing the energy gap $Delta$ in non-Hermitian quantum many-body systems. Here, the relevant length scale $xi simeq v_{rm LR}/Delta$ diverges because of the breakdown of the Lieb-Robinson bound on the velocity (i.e., unboundedness of $v_{rm LR}$) rather than vanishing of the energy gap $Delta$. The susceptibility to a change in the system parameter exhibits a singularity due to nonorthogonality of eigenstates. As an illustrative example, we present an exactly solvable model by generalizing Kitaevs toric-code model to a non-Hermitian regime.

قيم البحث

اقرأ أيضاً

We study the spectral statistics of spatially-extended many-body quantum systems with on-site Abelian symmetries or local constraints, focusing primarily on those with conserved dipole and higher moments. In the limit of large local Hilbert space dim ension, we find that the spectral form factor $K(t)$ of Floquet random circuits can be mapped exactly to a classical Markov circuit, and, at late times, is related to the partition function of a frustration-free Rokhsar-Kivelson (RK) type Hamiltonian. Through this mapping, we show that the inverse of the spectral gap of the RK-Hamiltonian lower bounds the Thouless time $t_{mathrm{Th}}$ of the underlying circuit. For systems with conserved higher moments, we derive a field theory for the corresponding RK-Hamiltonian by proposing a generalized height field representation for the Hilbert space of the effective spin chain. Using the field theory formulation, we obtain the dispersion of the low-lying excitations of the RK-Hamiltonian in the continuum limit, which allows us to extract $t_{mathrm{Th}}$. In particular, we analytically argue that in a system of length $L$ that conserves the $m^{th}$ multipole moment, $t_{mathrm{Th}}$ scales subdiffusively as $L^{2(m+1)}$. We also show that our formalism directly generalizes to higher dimensional circuits, and that in systems that conserve any component of the $m^{th}$ multipole moment, $t_{mathrm{Th}}$ has the same scaling with the linear size of the system. Our work therefore provides a general approach for studying spectral statistics in constrained many-body chaotic systems.
207 - Gaoyong Sun , Su-Peng Kou 2020
We develop the perturbation theory of the fidelity susceptibility in biorthogonal bases for arbitrary interacting non-Hermitian many-body systems with real eigenvalues. The quantum criticality in the non-Hermitian transverse field Ising chain is inve stigated by the second derivative of ground-state energy and the ground-state fidelity susceptibility. We show that the system undergoes a second-order phase transition with the Ising universal class by numerically computing the critical points and the critical exponents from the finite-size scaling theory. Interestingly, our results indicate that the biorthogonal quantum phase transitions are described by the biorthogonal fidelity susceptibility instead of the conventional fidelity susceptibility.
We investigate the spectral and transport properties of many-body quantum systems with conserved charges and kinetic constraints. Using random unitary circuits, we compute ensemble-averaged spectral form factors and linear-response correlation functi ons, and find that their characteristic time scales are given by the inverse gap of an effective Hamiltonian$-$or equivalently, a transfer matrix describing a classical Markov process. Our approach allows us to connect directly the Thouless time, $t_{text{Th}}$, determined by the spectral form factor, to transport properties and linear response correlators. Using tensor network methods, we determine the dynamical exponent, $z$, for a number of constrained, conserving models. We find universality classes with diffusive, subdiffusive, quasilocalized, and localized dynamics, depending on the severity of the constraints. In particular, we show that quantum systems with Fredkin constraints exhibit anomalous transport with dynamical exponent $z simeq 8/3$.
We investigate dynamical quantum phase transitions in disordered quantum many-body models that can support many-body localized phases. Employing $l$-bits formalism, we lay out the conditions for which singularities indicative of the transitions appea r in the context of many-body localization. Using the combination of the mapping onto $l$-bits and exact diagonalization results, we explicitly demonstrate the presence of these singularities for a candidate model that features many-body localization. Our work paves the way for understanding dynamical quantum phase transitions in the context of many-body localization, and elucidating whether different phases of the latter can be detected from analyzing the former. The results presented are experimentally accessible with state-of-the-art ultracold-atom and ion-trap setups.
Topological phase transitions in a three-dimensional (3D) topological insulator (TI) with an exchange field of strength $g$ are studied by calculating spin Chern numbers $C^pm(k_z)$ with momentum $k_z$ as a parameter. When $|g|$ exceeds a critical va lue $g_c$, a transition of the 3D TI into a Weyl semimetal occurs, where two Weyl points appear as critical points separating $k_z$ regions with different first Chern numbers. For $|g|<g_c$, $C^pm(k_z)$ undergo a transition from $pm 1$ to 0 with increasing $|k_z|$ to a critical value $k_z^{tiny C}$. Correspondingly, surface states exist for $|k_z| < k_z^{tiny C}$, and vanish for $|k_z| ge k_z^{tiny C}$. The transition at $|k_z| = k_z^{tiny C}$ is acompanied by closing of spin spectrum gap rather than energy gap.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا