ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectroscopic and optical response of odd-frequency superconductors

118   0   0.0 ( 0 )
 نشر من قبل Pavlo Sukhachov
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The optical response of superconductors with odd-frequency Berezinskii pairing is studied. By using a simple model with a parabolic dispersion law and a non-magnetic disorder, the spectral function, the electron density of states, and the optical conductivity are calculated for a few gap ansatzes. The spectral function and the electron density of states clearly reveal the gap for the Berezinskii pairing for the sufficiently strong frequency dependence of the order parameters. It is found that, similarly to the conventional BCS pairing, the odd-frequency gaps induce peaks in the real part of the conductivity, which, however, are sharper than in the BCS case. The magnitude and position of these peaks are determined by the frequency profile of the gap. The imaginary part of the optical conductivity for the Berezinskii pairing demonstrates sharp cusps that are absent in the case of the BCS superconductors. The corresponding results suggest that the Berezinskii pairing might allow for the optical transparency windows related to the onsets of the attenuation peaks in the real part of the conductivity. Thus, the study of the optical response not only provides an alternative way to probe the odd-frequency gaps but can reveal also additional features of the dynamic superconducting pairing.



قيم البحث

اقرأ أيضاً

It was previously suggested that an odd-frequency pair amplitude exists in the vicinity of boundaries in unconventional superconductors. We develop this idea and quest for a novel superconducting order parameter with an odd-frequency dependence. For this purpose, we focus on p-wave superconductors and extend the quasi-classical theory to include the odd-frequency dependence in the order parameter. Both of the frequency and spacial dependences of the order parameter are determined self-consistently. Under a finite electron-phonon interaction, it is found that an odd-frequency order parameter is stabilized near the boundary and coexists with the even-frequency one. By analyzing the induced odd-frequency pair amplitude in terms of the superconducting quasi-particle wavefunction, it is found that the mid-gap bound state generates the emergent odd-frequency order parameter.
Spin filter superconducting S/I/N tunnel junctions (NbN/GdN/TiN) show a robust and pronounced zero bias conductance peak at low temperatures, the magnitude of which is several times the normal state conductance of the junction. Such a conductance ano maly is representative of unconventional superconductivity and is interpreted as a direct signature of an odd frequency superconducting order.
We formulate a general framework for addressing both odd- and even-frequency superconductivity in Dirac semimetals and demonstrate that the odd-frequency or the Berezinskii pairing can naturally appear in these materials because of the chirality degr ee of freedom. We show that repulsive frequency-dependent interactions favor the Berezinskii pairing while an attractive electron-electron interaction allows for the BCS pairing. In the case of compensated Dirac and Weyl semimetals, both the conventional BCS and odd-frequency Berezinskii pairings require critical coupling. Since these pairings could originate from physically different mechanisms, our findings pave the way for controlling the realization of the Berezinskii superconductivity in topological semimetals. We also present the density of states with several cusp-like features that can serve as an experimentally verifiable signature of the odd-frequency gap.
The spin transport inside an odd-frequency spin-triplet superconductor differs from that of a conventional superconductor due to its distinct symmetry properties. We show that the peculiar nature of the density of states allows for an even larger spi n injection than in the normal-state. Moreover, when the odd-frequency pairing inherits its temperature dependence from a conventional superconductor through the proximity effect, the density of states can transition from gapless to gapped as the temperature decreases. At the transition point, there is a massive spin accumulation inside the odd-frequency superconductor. While the spin-flip scattering time is known to decrease below the superconducting transition temperature in conventional superconductors, we find that the same is true for the spin-orbit scattering time in odd-frequency superconductors. This renormalization is particularly large for energies close to the gap edge, if such a gap is present.
A novel superconducting state under the broken time-reversal symmetry is studied in conventional phonon-mediated superconductors. By solving the Eliashberg equation self-consistently with the mass renormalization effect, it is found that the even- an d odd-frequency components of the order parameter coexist in the bulk system as a consequence of the broken time-reversal symmetry. This finding would direct more attention to the odd-frequency pairing that affects physical quantities, especially in strong coupling superconductors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا