ترغب بنشر مسار تعليمي؟ اضغط هنا

Siblings, friends and acquaintances: Testing galaxy association methods

42   0   0.0 ( 0 )
 نشر من قبل Juan Pablo Caso
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In order to constraint the limitations of association methods applied to galaxy surveys, we analysed the catalogue of halos at $z=0$ of a cosmological simulation, trying to reproduce the limitations that an observational survey deal with. We focused in the percolation method, usually called Friends of Friends method, commonly used in literature. The analysis was carried on the dark matter cosmological simulation MDPL2, from the Multidark project. Results point to a large fraction of contaminants for massive halos in high density environments. Thresholds in the association parameters and the subsequent analysis of observational properties can mitigate the occurrence of fake positives. The use of tests for substructures can also be efficient in particular cases.

قيم البحث

اقرأ أيضاً

We present the galaxy group catalogue for the recently-completed 2MASS Redshift Survey (2MRS, Macri2019) which consists of 44572 redshifts, including 1041 new measurements for galaxies mostly located within the Zone of Avoidance. The galaxy group cat alogue is generated by using a novel, graph-theory based, modified version of the Friends-of-Friends algorithm. Several graph-theory examples are presented throughout this paper, including a new method for identifying substructures within groups. The results and graph-theory methods have been thoroughly interrogated against previous 2MRS group catalogues and a Theoretical Astrophysical Observatory (TAO) mock by making use of cutting-edge visualization techniques including immersive facilities, a digital planetarium, and virtual reality. This has resulted in a stable and robust catalogue with on-sky positions and line-of-sight distances within 0.5 Mpc and 2 Mpc, respectively, and has recovered all major groups and clusters. The final catalogue consists of 3022 groups, resulting in the most complete whole-sky galaxy group catalogue to date. We determine the 3D positions of these groups, as well as their luminosity and comoving distances, observed and corrected number of members, richness metric, velocity dispersion, and estimates of $R_{200}$ and $M_{200}$. We present three additional data products, i.e. the 2MRS galaxies found in groups, a catalogue of subgroups, and a catalogue of 687 new group candidates with no counterparts in previous 2MRS-based analyses.
State-of-the-art models of massive black hole formation postulate that quasars at $z>6$ reside in extreme peaks of the cosmic density structure in the early universe. Even so, direct observational evidence of these overdensities is elusive, especiall y on large scales ($gg$1 Mpc) as the spectroscopic follow-up of $z>6$ galaxies is observationally expensive. Here we present Keck / DEIMOS optical and IRAM / NOEMA millimeter spectroscopy of a $zsim6$ Lyman-break galaxy candidate originally discovered via broadband selection, at a projected separation of 4.65 physical Mpc (13.94 arcmin) from the luminous $z$=6.308 quasar J1030+0524. This well-studied field presents the strongest indication to date of a large-scale overdensity around a $z>6$ quasar. The Keck observations suggest a $zsim6.3$ dropout identification of the galaxy. The NOEMA 1.2mm spectrum shows a 3.5$sigma$ line that, if interpreted as [CII], would place the galaxy at $z$=6.318 (i.e., at a line-of-sight separation of 3.9 comoving Mpc assuming that relative proper motion is negligible). The measured [CII] luminosity is $3times10^8$ L$_odot$, in line with expectations for a galaxy with a star formation rate $sim15$ M$_odot$ yr$^{-1}$, as inferred from the rest-frame UV photometry. Our combined observations place the galaxy at the same redshift as the quasar, thus strengthening the overdensity scenario for this $z>6$ quasar. This pilot experiment demonstrates the power of millimeter-wavelength observations in the characterization of the environment of early quasars.
106 - E. Tempel , R. Kipper , A. Tamm 2016
Context. Groups form the most abundant class of galaxy systems. They act as the principal drivers of galaxy evolution and can be used as tracers of the large-scale structure and the underlying cosmology. However, the detection of galaxy groups from g alaxy redshift survey data is hampered by several observational limitations. Aims. We improve the widely used friends-of-friends (FoF) group finding algorithm with membership refinement procedures and apply the method to a combined dataset of galaxies in the local Universe. A major aim of the refinement is to detect subgroups within the FoF groups, enabling a more reliable suppression of the fingers-of-God effect. Methods. The FoF algorithm is often suspected of leaving subsystems of groups and clusters undetected. We used a galaxy sample built of the 2MRS, CF2, and 2M++ survey data comprising nearly 80000 galaxies within the local volume of 430 Mpc radius to detect FoF groups. We conducted a multimodality check on the detected groups in search for subgroups. We furthermore refined group membership using the group virial radius and escape velocity to expose unbound galaxies. We used the virial theorem to estimate group masses. Results. The analysis results in a catalogue of 6282 galaxy groups in the 2MRS sample with two or more members, together with their mass estimates. About half of the initial FoF groups with ten or more members were split into smaller systems with the multimodality check. An interesting comparison to our detected groups is provided by another group catalogue that is based on similar data but a completely different methodology. Two thirds of the groups are identical or very similar. Differences mostly concern the smallest and largest of these other groups, the former sometimes missing and the latter being divided into subsystems in our catalogue.
Unassociated Fermi-LAT sources provide a population with discovery potential. We discuss efforts to find new source associations for this population, and summarize the successes to date. We discuss how the measured gamma-ray properties of associated LAT sources can be used to describe the gamma-ray behavior of more-numerous source classes. Using classification techniques exploiting only these gamma-ray properties, we separate the LAT 2FGL catalog sources into pulsar and AGN candidates.
New MMT/Hectospec spectroscopy centered on the galaxy cluster A2626 and covering a ${sim} 1.8,text{deg}^2$ area out to $z sim 0.46$ more than doubles the number of galaxy redshifts in this region. The spectra confirm four clusters previously identifi ed photometrically. A2625, which was previously thought to be a close neighbor of A2626, is in fact much more distant. The new data show six substructures associated with A2626 and five more associated with A2637. There is also a highly collimated collection of galaxies and galaxy groups between A2626 and A2637 having at least three and probably four substructures. At larger scales, the A2626--A2637 complex is not connected to the Pegasus--Perseus filament.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا