ﻻ يوجد ملخص باللغة العربية
State-of-the-art models of massive black hole formation postulate that quasars at $z>6$ reside in extreme peaks of the cosmic density structure in the early universe. Even so, direct observational evidence of these overdensities is elusive, especially on large scales ($gg$1 Mpc) as the spectroscopic follow-up of $z>6$ galaxies is observationally expensive. Here we present Keck / DEIMOS optical and IRAM / NOEMA millimeter spectroscopy of a $zsim6$ Lyman-break galaxy candidate originally discovered via broadband selection, at a projected separation of 4.65 physical Mpc (13.94 arcmin) from the luminous $z$=6.308 quasar J1030+0524. This well-studied field presents the strongest indication to date of a large-scale overdensity around a $z>6$ quasar. The Keck observations suggest a $zsim6.3$ dropout identification of the galaxy. The NOEMA 1.2mm spectrum shows a 3.5$sigma$ line that, if interpreted as [CII], would place the galaxy at $z$=6.318 (i.e., at a line-of-sight separation of 3.9 comoving Mpc assuming that relative proper motion is negligible). The measured [CII] luminosity is $3times10^8$ L$_odot$, in line with expectations for a galaxy with a star formation rate $sim15$ M$_odot$ yr$^{-1}$, as inferred from the rest-frame UV photometry. Our combined observations place the galaxy at the same redshift as the quasar, thus strengthening the overdensity scenario for this $z>6$ quasar. This pilot experiment demonstrates the power of millimeter-wavelength observations in the characterization of the environment of early quasars.
Recent observations have found that many $zsim 6$ quasar fields lack galaxies. This unexpected lack of galaxies may potentially be explained by quasar radiation feedback. In this paper I present a suite of 3D radiative transfer cosmological simulatio
The properties of the first galaxies, expected to drive the Cosmic Dawn (CD) and the Epoch of Reionization (EoR), are encoded in the 3D structure of the cosmic 21-cm signal. Parameter inference from upcoming 21-cm observations promises to revolutioni
Cosmic Dawn II (CoDa II) is a new, fully-coupled radiation-hydrodynamics simulation of cosmic reionization and galaxy formation and their mutual impact, to redshift $z < 6$. With $4096^3$ particles and cells in a 94 Mpc box, it is large enough to mod
We present deep spectroscopic follow-up observations of the Bremer Deep Field (BDF) where the two $zsim$7 bright Ly$alpha$ emitters (LAE) BDF521 and BDF3299 were previously discovered by Vanzella et al. (2011) and where a factor of $sim$3-4 overdensi
We present Southern African Large Telescope (SALT) follow-up observations of seven massive clusters detected by the Atacama Cosmology Telescope (ACT) on the celestial equator using the Sunyaev-Zeldovich (SZ) effect. We conducted multi-object spectros