ﻻ يوجد ملخص باللغة العربية
Linear and non-linear measures of heart rate variability (HRV) are widely investigated as non-invasive indicators of health. Stress has a profound impact on heart rate, and different meditation techniques have been found to modulate heartbeat rhythm. This paper aims to explore the process of identifying appropriate metrices from HRV analysis for sonification. Sonification is a type of auditory display involving the process of mapping data to acoustic parameters. This work explores the use of auditory display in aiding the analysis of HRV leveraged by unsupervised machine learning techniques. Unsupervised clustering helps select the appropriate features to improve the sonification interpretability. Vocal synthesis sonification techniques are employed to increase comprehension and learnability of the processed data displayed through sound. These analyses are early steps in building a real-time sound-based biofeedback training system.
Due to its inferior characteristics, an observed (noisy) images direct use gives rise to poor segmentation results. Intuitively, using its noise-free image can favorably impact image segmentation. Hence, the accurate estimation of the residual betwee
Instead of directly utilizing an observed image including some outliers, noise or intensity inhomogeneity, the use of its ideal value (e.g. noise-free image) has a favorable impact on clustering. Hence, the accurate estimation of the residual (e.g. u
To effectively optimize Takagi-Sugeno-Kang (TSK) fuzzy systems for regression problems, a mini-batch gradient descent with regularization, DropRule, and AdaBound (MBGD-RDA) algorithm was recently proposed. This paper further proposes FCM-RDpA, which
Advanced and accurate modelling of a Flapping Wing Micro Air Vehicle (FW MAV) and its control is one of the recent research topics related to the field of autonomous Unmanned Aerial Vehicles (UAVs). In this work, a four wing Natureinspired (NI) FW MA
Although spatial information of images usually enhance the robustness of the Fuzzy C-Means (FCM) algorithm, it greatly increases the computational costs for image segmentation. To achieve a sound trade-off between the segmentation performance and the