ﻻ يوجد ملخص باللغة العربية
This is the second paper in a series where we examine the physics of pair producing gaps in low-luminosity accreting supermassive black hole systems. In this paper, we carry out time-dependent self-consistent fully general relativistic 1D PIC simulations of the gap, including full inverse Compton scattering and photon tracking. Similar to the previous paper, we find a highly time-dependent solution where a macroscopic vacuum gap can open quasi-periodically, producing bursts of $e^pm$ pairs and high energy radiation. We present the light curve, particle and photon spectra from this process. Using an empirical scaling relation, we rescale the parameters to the inferred values at the base of the jet in M87, and find that the observed TeV flares could potentially be explained by this model under certain parameter assumptions.
In some low-luminosity accreting supermassive black hole systems, the supply of plasma in the funnel region can be a problem. It is believed that a local region with unscreened electric field can exist in the black hole magnetosphere, accelerating pa
Inverse Compton-pair cascades are initiated when gamma-rays are absorbed on an ambient soft photon field to produce relativistic pairs, which in turn up-scatter the same soft photons to produce more gamma-rays. If the Compton scatterings take place i
We perform magnetohydrodynamic simulations of accreting, equal-mass binary black holes in full general relativity focusing on the impact of black hole spin on the dynamical formation and evolution of minidisks. We find that during the late inspiral t
Theory and observations suggest that single-star evolution is not able to produce black holes (BHs) with masses in the range $3-5M_{odot}$ and above $sim 45M_{odot}$, referred to as the lower mass gap (LMG) and the upper mas gap (UMG), respectively.
OJ287 is a quasi-periodic quasar with roughly 12 year optical cycles. It displays prominent outbursts which are predictable in a binary black hole model. The model predicted a major optical outburst in December 2015. We found that the outburst did oc