ترغب بنشر مسار تعليمي؟ اضغط هنا

Populating the Black Hole Mass Gaps In Stellar Clusters: General Relations and Upper Limits

72   0   0.0 ( 0 )
 نشر من قبل Johan Samsing Mr.
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Theory and observations suggest that single-star evolution is not able to produce black holes (BHs) with masses in the range $3-5M_{odot}$ and above $sim 45M_{odot}$, referred to as the lower mass gap (LMG) and the upper mas gap (UMG), respectively. However, it is possible to form BHs in these gaps through merger of compact objects in dense clusters, e.g. the LMG and the UMG can be populated through binary neutron star- and BBH mergers, respectively. This implies that if binary mergers are observed in gravitational waves (GWs) with at least one mass gap object, then either clusters are effective in assembling binary mergers, or our single-star models have to be revised. Understanding how effective clusters are at populating both mass gaps have therefore major implications for both stellar- and GW astrophysics. In this paper we present a systematic study on how efficient stellar clusters are at populating both mass gaps through in-cluster GW mergers. For this, we derive a set of closed form relations for describing the evolution of compact object binaries undergoing dynamical interactions and GW merger inside their cluster. By considering both static and time evolving populations, we find in particular that globular clusters are clearly inefficient at populating the LMG in contrast to the UMG. We further describe how these results relate to the characteristic mass, time, and length scales associated with the problem.



قيم البحث

اقرأ أيضاً

Recent discoveries of black hole (BH) candidates in Galactic and extragalactic globular clusters (GCs) have ignited interest in understanding how BHs dynamically evolve in a GC and the number of BHs ($N_{rm{BH}}$) that may still be retained by todays GCs. Numerical models show that even if stellar-mass BHs are retained in todays GCs, they are typically in configurations that are not directly detectable. We show that a suitably defined measure of mass segregation ($Delta$) between, e.g., giants and low-mass main-sequence stars, can be an effective probe to indirectly estimate $N_{rm{BH}}$ in a GC aided by calibrations from numerical models. Using numerical models including all relevant physics we first show that $N_{rm{BH}}$ is strongly anticorrelated with $Delta$ between giant stars and low-mass main-sequence stars. We apply the distributions of $Delta$ vs $N_{rm{BH}}$ obtained from models to three Milky Way GCs to predict the $N_{rm{BH}}$ retained by them at present. We calculate $Delta$ using the publicly available ACS survey data for 47 Tuc, M 10, and M 22, all with identified stellar-mass BH candidates. Using these measured $Delta$ and distributions of $Delta$ vs $N_{rm{BH}}$ from models as calibration we predict distributions for $N_{rm{BH}}$ expected to be retained in these GCs. For 47 Tuc, M 10, and M 22 our predicted distributions peak at $N_{rm{BH}}approx20$, $24$, and $50$, whereas, within the $2sigma$ confidence level, $N_{rm{BH}}$ can be up to $sim150$, $50$, and $200$, respectively.
This is the second paper in a series where we examine the physics of pair producing gaps in low-luminosity accreting supermassive black hole systems. In this paper, we carry out time-dependent self-consistent fully general relativistic 1D PIC simulat ions of the gap, including full inverse Compton scattering and photon tracking. Similar to the previous paper, we find a highly time-dependent solution where a macroscopic vacuum gap can open quasi-periodically, producing bursts of $e^pm$ pairs and high energy radiation. We present the light curve, particle and photon spectra from this process. Using an empirical scaling relation, we rescale the parameters to the inferred values at the base of the jet in M87, and find that the observed TeV flares could potentially be explained by this model under certain parameter assumptions.
Observational evidence suggests that the majority of stars may have been born in stellar clusters or associations. Within these dense environments, dynamical interactions lead to high rates of close stellar encounters. A variety of recent observation al and theoretical indications suggest stellar-mass black holes may be present and play an active dynamical role in stellar clusters of all masses. In this study, we explore the tidal disruption of main sequence stars by stellar-mass black holes in young star clusters. We compute a suite of over 3000 independent $N$-body simulations that cover a range in cluster mass, metallicity, and half-mass radii. We find stellar-mass black hole tidal disruption events (TDEs) occur at an overall rate of up to roughly $200,rm{Gpc}^{-3},rm{yr}^{-1}$ in young stellar clusters in the local universe. These TDEs are expected to have several characteristic features, namely fast rise times of order a day, peak X-ray luminosities of at least $10^{44},rm{erg,s}^{-1}$, and bright optical luminosities (roughly $10^{41}-10^{44},rm{erg,s}^{-1}$) associated with reprocessing by a disk wind. In particular, we show these events share many features in common with the emerging class of Fast Blue Optical Transients.
Astrophysical black holes are thought to be the Kerr black holes predicted by general relativity, but macroscopic deviations from the Kerr solution can be expected from a number of scenarios involving new physics. In Paper I, we studied the reflectio n features in NuSTAR and XMM-Newton spectra of the supermassive black hole at the center of the galaxy MCG-06-30-15 and we constrained a set of deformation parameters proposed by Konoplya, Rezzolla & Zhidenko (Phys. Rev. D93, 064015, 2016). In the present work, we analyze the X-ray data of a stellar-mass black hole within the same theoretical framework in order to probe a different curvature regime. We consider a NuSTAR observation of the X-ray binary EXO 1846-031 during its outburst in 2019. As in the case of Paper I, all our fits are consistent with the Kerr black hole hypothesis, but some deformation parameters cannot be constrained well.
The dynamical assembly of binary black holes (BBHs) in dense star clusters (SCs) is one of the most promising pathways for producing observable gravitational wave (GW) sources, however several other formation scenarios likely operate as well. One of the current outstanding questions is how these different pathways may be distinguished apart. In this paper we suggest a new multi-messenger observable that can be used to constrain the formation of BBH mergers originating from SCs: the electromagnetic signal from tidal disruptions (TDs) of stars by BBHs. Such TDs will show variability in their light curve from the orbital motion of the disruptive BBHs, and can therefore be used to map the BBH orbital period distribution, and thereby also the dynamical mechanisms that eventually drive the BBHs to merger. Using an analytical approach including General Relativistic effects, we find that the orbital period distribution of BBHs within globular clusters peaks on timescales of days, which we argue is unique to this assembly pathway. We propose that the search for variable TDs in current and future EM transient surveys might be used to constrain the merger history of BBHs in SCs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا