ترغب بنشر مسار تعليمي؟ اضغط هنا

On symmetry and uniqueness of ground states for linear and nonlinear elliptic PDEs

80   0   0.0 ( 0 )
 نشر من قبل Enno Lenzmann
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study ground state solutions for linear and nonlinear elliptic PDEs in $mathbb{R}^n$ with (pseudo-)differential operators of arbitrary order. We prove a general symmetry result in the nonlinear case as well as a uniqueness result for ground states in the linear case. In particular, we can deal with problems (e.,g. higher order PDEs) that cannot be tackled by usual methods such as maximum principles, moving planes, or Polya--Szego inequalities. Instead, we use arguments based on the Fourier transform and we apply a rigidity result for the Hardy-Littlewood majorant problem in $mathbb{R}^n$ recently obtained by the last two authors of the present paper.



قيم البحث

اقرأ أيضاً

We continue our study of the problem of mixing for a class of PDEs with very degenerate noise. As we established earlier, the uniqueness of stationary measure and its exponential stability in the dual-Lipschitz metric holds under the hypothesis that the unperturbed equation has exactly one globally stable equilibrium point. In this paper, we relax that condition, assuming only global controllability to a given point. It is proved that the uniqueness of a stationary measure and convergence to it are still valid, whereas the rate of convergence is not necessarily exponential. The result is applicable to randomly forced parabolic-type PDEs, provided that the deterministic part of the external force is in general position, ensuring a regular structure for the attractor of the unperturbed problem. The proof uses a new idea that reduces the verification of a stability property to the investigation of a conditional random walk.
353 - Remi Carles 2009
We consider the propagation of wave packets for the nonlinear Schrodinger equation, in the semi-classical limit. We establish the existence of a critical size for the initial data, in terms of the Planck constant: if the initial data are too small, t he nonlinearity is negligible up to the Ehrenfest time. If the initial data have the critical size, then at leading order the wave function propagates like a coherent state whose envelope is given by a nonlinear equation, up to a time of the same order as the Ehrenfest time. We also prove a nonlinear superposition principle for these nonlinear wave packets.
In this paper we prove regularity results for a class of nonlinear degenerate elliptic equations of the form $displaystyle -operatorname{div}(A(| abla u|) abla u)+Bleft( | abla u|right) =f(u)$; in particular, we investigate the second order regularit y of the solutions. As a consequence of these results, we obtain symmetry and monotonicity properties of positive solutions for this class of degenerate problems in convex symmetric domains via a suitable adaption of the celebrated moving plane method of Alexandrov-Serrin.
215 - Remi Carles 2010
We consider the propagation of wave packets for a one-dimensional nonlinear Schrodinger equation with a matrix-valued potential, in the semi-classical limit. For an initial coherent state polarized along some eigenvector, we prove that the nonlinear evolution preserves the separation of modes, in a scaling such that nonlinear effects are critical (the envelope equation is nonlinear). The proof relies on a fine geometric analysis of the role of spectral projectors, which is compatible with the treatment of nonlinearities. We also prove a nonlinear superposition principle for these adiabatic wave packets.
We prove the existence of infinitely many non square-integrable stationary solutions for a family of massless Dirac equations in 2D. They appear as effective equations in two dimensional honeycomb structures. We give a direct existence proof thanks t o a particular radial ansatz, which also allows to provide the exact asymptotic behavior of spinor components. Moreover, those solutions admit a variational characterization. We also indicate how the content of the present paper allows to extend our previous results for the massive case [5] to more general nonlinearities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا