ﻻ يوجد ملخص باللغة العربية
The High Altitude Water Cherenkov (HAWC) observatory recently published the discovery of SS 433 as a TeV source, reporting the observation of multi-TeV gamma-ray emission from the jet interaction regions e1 and w1, suggesting in-situ particle acceleration. This showed the first direct evidence of acceleration in jets at energies greater than a few TeV. SS 433 was the first microquasar to be discovered and is still considered special in that the accretion is supercritical and the luminosity of the system is very high ($sim10^{40}$ erg s$^{-2}$). The lobes of the supernova remnant W 50 in which the jets terminate, about 40 parsecs from the central binary, are expected to accelerate charged particles, and indeed radio and X-ray emission consistent with electron synchrotron emission in a magnetic field have been observed. SS 433 has also been a strong candidate for hadronic acceleration due to spectroscopic evidence of ionized nuclei in the inner jets. However, multiwavelength fits including the HAWC measurements favor the leptonic production of the observed gamma rays. Here, we present new follow-up measurements of the jet interaction regions of SS 433 using the most recent data from HAWC.
The extended jets of the microquasar SS 433 have been observed in optical, radio, X-ray, and recently very-high-energy (VHE) $gamma$-rays by HAWC. The detection of HAWC $gamma$-rays with energies as great as 25 TeV motivates searches for high-energy
We investigate hadronic and leptonic scenarios for the GeV--TeV gamma-ray emission from jets of the microquasar SS 433. The emission region of the TeV photons coincides with the X-ray knots, where electrons are efficiently accelerated. On the other h
We have detected new components in stationary emission lines of SS 433; these are the superbroad components that are low-contrast substrates with a width of 2000--2500 km s-1 in He I $lambda4922$ and H$beta$ and 4000--5000 km s-1 in He II $lambda4686
The detection of two sources of gamma rays towards the microquasar SS 433 has been recently reported. The first source can be associated with SS 433s eastern jet lobe, whereas the second source is variable and displays significant periodicity compati
We calculate X-ray signal that should arise due to reflection of the putative collimated X-ray emission of the Galactic supercritical accretor SS 433 on molecular clouds in its vicinity. The molecular gas distribution in the region of interest has be