ترغب بنشر مسار تعليمي؟ اضغط هنا

Effect of Activation Functions on the Training of Overparametrized Neural Nets

277   0   0.0 ( 0 )
 نشر من قبل Abhishek Panigrahi
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

It is well-known that overparametrized neural networks trained using gradient-based methods quickly achieve small training error with appropriate hyperparameter settings. Recent papers have proved this statement theoretically for highly overparametrized networks under reasonable assumptions. These results either assume that the activation function is ReLU or they crucially depend on the minimum eigenvalue of a certain Gram matrix depending on the data, random initialization and the activation function. In the later case, existing works only prove that this minimum eigenvalue is non-zero and do not provide quantitative bounds. On the empirical side, a contemporary line of investigations has proposed a number of alternative activation functions which tend to perform better than ReLU at least in some settings but no clear understanding has emerged. This state of affairs underscores the importance of theoretically understanding the impact of activation functions on training. In the present paper, we provide theoretical results about the effect of activation function on the training of highly overparametrized 2-layer neural networks. A crucial property that governs the performance of an activation is whether or not it is smooth. For non-smooth activations such as ReLU, SELU and ELU, all eigenvalues of the associated Gram matrix are large under minimal assumptions on the data. For smooth activations such as tanh, swish and polynomials, the situation is more complex. If the subspace spanned by the data has small dimension then the minimum eigenvalue of the Gram matrix can be small leading to slow training. But if the dimension is large and the data satisfies another mild condition, then the eigenvalues are large. If we allow deep networks, then the small data dimension is not a limitation provided that the depth is sufficient. We discuss a number of extensions and applications of these results.



قيم البحث

اقرأ أيضاً

Training activation quantized neural networks involves minimizing a piecewise constant function whose gradient vanishes almost everywhere, which is undesirable for the standard back-propagation or chain rule. An empirical way around this issue is to use a straight-through estimator (STE) (Bengio et al., 2013) in the backward pass only, so that the gradient through the modified chain rule becomes non-trivial. Since this unusual gradient is certainly not the gradient of loss function, the following question arises: why searching in its negative direction minimizes the training loss? In this paper, we provide the theoretical justification of the concept of STE by answering this question. We consider the problem of learning a two-linear-layer network with binarized ReLU activation and Gaussian input data. We shall refer to the unusual gradient given by the STE-modifed chain rule as coarse gradient. The choice of STE is not unique. We prove that if the STE is properly chosen, the expected coarse gradient correlates positively with the population gradient (not available for the training), and its negation is a descent direction for minimizing the population loss. We further show the associated coarse gradient descent algorithm converges to a critical point of the population loss minimization problem. Moreover, we show that a poor choice of STE leads to instability of the training algorithm near certain local minima, which is verified with CIFAR-10 experiments.
The slow convergence rate and pathological curvature issues of first-order gradient methods for training deep neural networks, initiated an ongoing effort for developing faster $mathit{second}$-$mathit{order}$ optimization algorithms beyond SGD, with out compromising the generalization error. Despite their remarkable convergence rate ($mathit{independent}$ of the training batch size $n$), second-order algorithms incur a daunting slowdown in the $mathit{cost}$ $mathit{per}$ $mathit{iteration}$ (inverting the Hessian matrix of the loss function), which renders them impractical. Very recently, this computational overhead was mitigated by the works of [ZMG19,CGH+19}, yielding an $O(mn^2)$-time second-order algorithm for training two-layer overparametrized neural networks of polynomial width $m$. We show how to speed up the algorithm of [CGH+19], achieving an $tilde{O}(mn)$-time backpropagation algorithm for training (mildly overparametrized) ReLU networks, which is near-linear in the dimension ($mn$) of the full gradient (Jacobian) matrix. The centerpiece of our algorithm is to reformulate the Gauss-Newton iteration as an $ell_2$-regression problem, and then use a Fast-JL type dimension reduction to $mathit{precondition}$ the underlying Gram matrix in time independent of $M$, allowing to find a sufficiently good approximate solution via $mathit{first}$-$mathit{order}$ conjugate gradient. Our result provides a proof-of-concept that advanced machinery from randomized linear algebra -- which led to recent breakthroughs in $mathit{convex}$ $mathit{optimization}$ (ERM, LPs, Regression) -- can be carried over to the realm of deep learning as well.
We study the dynamics of optimization and the generalization properties of one-hidden layer neural networks with quadratic activation function in the over-parametrized regime where the layer width $m$ is larger than the input dimension $d$. We cons ider a teacher-student scenario where the teacher has the same structure as the student with a hidden layer of smaller width $m^*le m$. We describe how the empirical loss landscape is affected by the number $n$ of data samples and the width $m^*$ of the teacher network. In particular we determine how the probability that there be no spurious minima on the empirical loss depends on $n$, $d$, and $m^*$, thereby establishing conditions under which the neural network can in principle recover the teacher. We also show that under the same conditions gradient descent dynamics on the empirical loss converges and leads to small generalization error, i.e. it enables recovery in practice. Finally we characterize the time-convergence rate of gradient descent in the limit of a large number of samples. These results are confirmed by numerical experiments.
The machine learning community has become increasingly interested in the energy efficiency of neural networks. The Spiking Neural Network (SNN) is a promising approach to energy-efficient computing, since its activation levels are quantized into temp orally sparse, one-bit values (i.e., spike events), which additionally converts the sum over weight-activity products into a simple addition of weights (one weight for each spike). However, the goal of maintaining state-of-the-art (SotA) accuracy when converting a non-spiking network into an SNN has remained an elusive challenge, primarily due to spikes having only a single bit of precision. Adopting tools from signal processing, we cast neural activation functions as quantizers with temporally-diffused error, and then train networks while smoothly interpolating between the non-spiking and spiking regimes. We apply this technique to the Legendre Memory Unit (LMU) to obtain the first known example of a hybrid SNN outperforming SotA recurrent architectures -- including the LSTM, GRU, and NRU -- in accuracy, while reducing activities to at most 3.74 bits on average with 1.26 significant bits multiplying each weight. We discuss how these methods can significantly improve the energy efficiency of neural networks.
118 - Sho Sonoda , Ming Li , Feilong Cao 2020
A random net is a shallow neural network where the hidden layer is frozen with random assignment and the output layer is trained by convex optimization. Using random weights for a hidden layer is an effective method to avoid the inevitable non-convex ity in standard gradient descent learning. It has recently been adopted in the study of deep learning theory. Here, we investigate the expressive power of random nets. We show that, despite the well-known fact that a shallow neural network is a universal approximator, a random net cannot achieve zero approximation error even for smooth functions. In particular, we prove that for a class of smooth functions, if the proposal distribution is compactly supported, then a lower bound is positive. Based on the ridgelet analysis and harmonic analysis for neural networks, the proof uses the Plancherel theorem and an estimate for the truncated tail of the parameter distribution. We corroborate our theoretical results with various simulation studies, and generally two main take-home messages are offered: (i) Not any distribution for selecting random weights is feasible to build a universal approximator; (ii) A suitable assignment of random weights exists but to some degree is associated with the complexity of the target function.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا