ترغب بنشر مسار تعليمي؟ اضغط هنا

DeepClean -- self-supervised artefact rejection for intensive care waveform data using deep generative learning

69   0   0.0 ( 0 )
 نشر من قبل Tom Edinburgh
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

Waveform physiological data is important in the treatment of critically ill patients in the intensive care unit. Such recordings are susceptible to artefacts, which must be removed before the data can be re-used for alerting or reprocessed for other clinical or research purposes. Accurate removal of artefacts reduces bias and uncertainty in clinical assessment, as well as the false positive rate of intensive care unit alarms, and is therefore a key component in providing optimal clinical care. In this work, we present DeepClean; a prototype self-supervised artefact detection system using a convolutional variational autoencoder deep neural network that avoids costly and painstaking manual annotation, requiring only easily-obtained good data for training. For a test case with invasive arterial blood pressure, we demonstrate that our algorithm can detect the presence of an artefact within a 10-second sample of data with sensitivity and specificity around 90%. Furthermore, DeepClean was able to identify regions of artefact within such samples with high accuracy and we show that it significantly outperforms a baseline principle component analysis approach in both signal reconstruction and artefact detection. DeepClean learns a generative model and therefore may also be used for imputation of missing data.

قيم البحث

اقرأ أيضاً

Missing data imputation can help improve the performance of prediction models in situations where missing data hide useful information. This paper compares methods for imputing missing categorical data for supervised classification tasks. We experime nt on two machine learning benchmark datasets with missing categorical data, comparing classifiers trained on non-imputed (i.e., one-hot encoded) or imputed data with different levels of additional missing-data perturbation. We show imputation methods can increase predictive accuracy in the presence of missing-data perturbation, which can actually improve prediction accuracy by regularizing the classifier. We achieve the state-of-the-art on the Adult dataset with missing-data perturbation and k-nearest-neighbors (k-NN) imputation.
Recent advances in deep learning have achieved promising performance for medical image analysis, while in most cases ground-truth annotations from human experts are necessary to train the deep model. In practice, such annotations are expensive to col lect and can be scarce for medical imaging applications. Therefore, there is significant interest in learning representations from unlabelled raw data. In this paper, we propose a self-supervised learning approach to learn meaningful and transferable representations from medical imaging video without any type of human annotation. We assume that in order to learn such a representation, the model should identify anatomical structures from the unlabelled data. Therefore we force the model to address anatomy-aware tasks with free supervision from the data itself. Specifically, the model is designed to correct the order of a reshuffled video clip and at the same time predict the geometric transformation applied to the video clip. Experiments on fetal ultrasound video show that the proposed approach can effectively learn meaningful and strong representations, which transfer well to downstream tasks like standard plane detection and saliency prediction.
77 - Shulei Wang 2021
Self-supervised metric learning has been a successful approach for learning a distance from an unlabeled dataset. The resulting distance is broadly useful for improving various distance-based downstream tasks, even when no information from downstream tasks is utilized in the metric learning stage. To gain insights into this approach, we develop a statistical framework to theoretically study how self-supervised metric learning can benefit downstream tasks in the context of multi-view data. Under this framework, we show that the target distance of metric learning satisfies several desired properties for the downstream tasks. On the other hand, our investigation suggests the target distance can be further improved by moderating each directions weights. In addition, our analysis precisely characterizes the improvement by self-supervised metric learning on four commonly used downstream tasks: sample identification, two-sample testing, $k$-means clustering, and $k$-nearest neighbor classification. As a by-product, we propose a simple spectral method for self-supervised metric learning, which is computationally efficient and minimax optimal for estimating target distance. Finally, numerical experiments are presented to support the theoretical results in the paper.
Despite decades of clinical research, sepsis remains a global public health crisis with high mortality, and morbidity. Currently, when sepsis is detected and the underlying pathogen is identified, organ damage may have already progressed to irreversi ble stages. Effective sepsis management is therefore highly time-sensitive. By systematically analysing trends in the plethora of clinical data available in the intensive care unit (ICU), an early prediction of sepsis could lead to earlier pathogen identification, resistance testing, and effective antibiotic and supportive treatment, and thereby become a life-saving measure. Here, we developed and validated a machine learning (ML) system for the prediction of sepsis in the ICU. Our analysis represents the largest multi-national, multi-centre in-ICU study for sepsis prediction using ML to date. Our dataset contains $156,309$ unique ICU admissions, which represent a refined and harmonised subset of five large ICU databases originating from three countries. Using the international consensus definition Sepsis-3, we derived hourly-resolved sepsis label annotations, amounting to $26,734$ ($17.1%$) septic stays. We compared our approach, a deep self-attention model, to several clinical baselines as well as ML baselines and performed an extensive internal and external validation within and across databases. On average, our model was able to predict sepsis with an AUROC of $0.847 pm 0.050$ (internal out-of sample validation) and $0.761 pm 0.052$ (external validation). For a harmonised prevalence of $17%$, at $80%$ recall our model detects septic patients with $39%$ precision 3.7 hours in advance.
62 - Paul Novello 2021
In the context of supervised learning of a function by a Neural Network (NN), we claim and empirically justify that a NN yields better results when the distribution of the data set focuses on regions where the function to learn is steeper. We first t raduce this assumption in a mathematically workable way using Taylor expansion. Then, theoretical derivations allow to construct a methodology that we call Variance Based Samples Weighting (VBSW). VBSW uses local variance of the labels to weight the training points. This methodology is general, scalable, cost effective, and significantly increases the performances of a large class of NNs for various classification and regression tasks on image, text and multivariate data. We highlight its benefits with experiments involving NNs from shallow linear NN to Resnet or Bert.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا