ترغب بنشر مسار تعليمي؟ اضغط هنا

Type Ia SN 2019ein: New Insights into the Similarities and diversities among High-Velocity SNe Ia

110   0   0.0 ( 0 )
 نشر من قبل Miho Kawabata
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present optical observations of type Ia supernova (SN) 2019ein, starting at 2 days after the estimated explosion date. The spectra and the light curves show that SN 2019ein belongs to the High-Velocity (HV) and Bload Line groups with relatively rapid decline in the light curves (Delta m15(B) = 1.36 +- 0.02 mag) and the short rise time (15.37 +- 0.55 days). The Si II 6355 velocity, associated with a photospheric component but not with a detached high-velocity feature, reached ~ 20,000 km s-1 at 12 days before the B-band maximum. The line velocity however decreased very rapidly and smoothly toward the maximum light, where it was ~ 13,000 km s-1 as relatively low among HV SNe. This indicates that the speed of the spectral evolution of HV SNe Ia is correlated not only to the velocity at the maximum light, but also to the light curve decline rate like the case for Normal-Velocity (NV) SNe Ia. Spectral synthesis modeling shows that the outermost layer at > 17,000 km s-1 is well described by the O-Ne-C burning layer extending to at least 25,000 km s-1, and there is no unburnt carbon below 30,000 km s-1; these properties are largely consistent with the delayed detonation scenario, and are shared with the prototypical HV SN 2002bo despite the large difference in Delta m15(B). This structure is strikingly different from that derived for the well-studied NV SN 2011fe. We suggest that the relation between the mass of 56Ni (or Delta m15) and the extent of the O-Ne-C burning layer provides an important constraint on the explosion mechanism(s) of HV and NV SNe.



قيم البحث

اقرأ أيضاً

We present multiwavelength photometric and spectroscopic observations of SN 2019ein, a high-velocity Type Ia supernova (SN Ia) discovered in the nearby galaxy NGC 5353 with a two-day nondetection limit. SN 2019ein exhibited some of the highest measur ed expansion velocities of any SN Ia, with a Si II absorption minimum blueshifted by 24,000 km s$^{-1}$ at 14 days before peak brightness. More unusually, we observed the emission components of the P Cygni profiles to be blueshifted upward of 10,000 km s$^{-1}$ before B-band maximum light. This blueshift, among the highest in a sample of 28 other Type Ia supernovae, is greatest at our earliest spectroscopic epoch and subsequently decreases toward maximum light. We discuss possible progenitor systems and explosion mechanisms that could explain these extreme absorption and emission velocities. Radio observations beginning 14 days before B-band maximum light yield nondetections at the position of SN 2019ein, which rules out symbiotic progenitor systems, most models of fast optically thick accretion winds, and optically thin shells of mass $lesssim 10^{-6}$ M$_odot$ at radii $< 100$ AU. Comparing our spectra to models and observations of other high-velocity SNe Ia, we find that SN 2019ein is well fit by a delayed-detonation explosion. We propose that the high emission velocities may be the result of abundance enhancements due to ejecta mixing in an asymmetric explosion, or optical depth effects in the photosphere of the ejecta at early times. These findings may provide evidence for common explosion mechanisms and ejecta geometries among high-velocity SNe Ia.
Evidence of high-velocity features such as those seen in the near-maximum spectra of some Type Ia Supernovae (eg SN 2000cx) has been searched for in the available SNIa spectra observed earlier than one week before B maximum. Recent observational effo rts have doubled the number of SNeIa with very early spectra. Remarkably, all SNeIa with early data (7 in our RTN sample and 10 from other programmes) show signs of such features, to a greater or lesser degree, in CaII IR, and some also in SiII 6255A line. High-velocity features may be interpreted as abundance or density enhancements. Abundance enhancements would imply an outer region dominated by Si and Ca. Density enhancements may result from the sweeping up of circumstellar material by the highest velocity SN ejecta. In this scenario, the high incidence of HVFs suggests that a thick disc and/or a high-density companion wind surrounds the exploding white dwarf, as may be the case in Single Degenerate systems. Large-scale angular fluctuations in the radial density and abundance distribution may also be responsible: this could originate in the explosion, and would suggest a deflagration as the more likely explosion mechanism. CSM-interaction and surface fluctuations may coexist, possibly leaving different signatures on the spectrum. In some SNe the HVFs are narrowly confined in velocity, suggesting the ejection of blobs of burned material.
Photometric and spectroscopic observations of type Ia supernova (SN) 2017fgc which cover the period from $-$12 to +137 days since the $B$-band maximum are presented. SN 2017fgc is a photometrically normal SN Ia with the luminosity decline rate, $ Del ta m_{15} (B)_{true} $= 1.10 $ pm $ 0.10 mag. Spectroscopically, it belongs to the High Velocity (HV) SNe Ia group, with the Si II $lambda$6355 velocity near the $B$-band maximum estimated to be 15,200 $ pm $ 480 km $s^{-1}$. At the epochs around the near-infrared secondary peak, the $R$ and $I$ bands show an excess of $sim$0.2 mag level compared to the light curves of the normal velocity (NV) SNe Ia. Further inspection of the samples of HV and NV SNe Ia indicates that the excess is a generic feature among HV SNe Ia, different from NV SNe Ia. There is also a hint that the excess is seen in the V band, both in SN 2017fgc and other HV SNe Ia, which behaves like a less prominent shoulder in the light curve. The excess is not obvious in the B band (and unknown in the U band), and the color is consistent with the fiducial SN color. This might indicate the excess is attributed to the bolometric luminosity, not in the color. This excess is less likely caused by external effects, like an echo or change in reddening but could be due to an ionization effect, which reflects an intrinsic, either distinct or continuous, difference in the ejecta properties between HV and NV SNe Ia.
86 - Kaicheng Zhang 2018
We present extensive spectroscopic observations for one of the closest type Ia supernovae (SNe Ia), SN 2014J discovered in M82, ranging from 10.4 days before to 473.2 days after B-band maximum light. The diffuse interstellar band (DIB) features detec ted in a high-resolution spectrum allow an estimate of line-of-sight extinction as Av=1.9+/-0.6 mag. Spectroscopically, SN 2014J can be put into the high-velocity (HV) subgroup in Wangs classification with a velocity of Si~II 6355 at maximum light as about 12200 km/s, but has a low velocity gradient (LVG, following Benettis classification) as 41+/-2 km/s/day, which is inconsistent with the trend that HV SNe Ia generally have larger velocity gradients. We find that the HV SNe Ia with LVGs tend to have relatively stronger Si III (at ~4400 Angstrom) absorptions in early spectra, larger ratios of S II 5468 to S II 5640, and weaker Si II 5972 absorptions compared to their counterparts with similar velocities but high velocity gradients. This shows that the HV+LVG subgroup of SNe Ia may have intrinsically higher photospheric temperature, which indicates that their progenitors may experience more complete burning in the explosions relative to the typical HV SNe Ia.
371 - Ping Chen , Boaz Katz 2019
We report comprehensive multi-wavelength observations of a peculiar Type Ia-like supernova (SN Ia-pec) ASASSN-15pz. ASASSN-15pz is a spectroscopic twin of SN 2009dc, a so-called Super-Chandrasekhar-mass SN, throughout its evolution, but it has a peak luminosity M_B,peak = -19.69 +/- 0.12 mag that is approx 0.6 mag dimmer and comparable to the SN 1991T sub-class of SNe Ia at the luminous end of the normal width-luminosity relation. The synthesized Ni56 mass of M_Ni56 = 1.13 +/- 0.14 M_sun is also substantially less than that found for several 2009dc-like SNe. Previous well-studied 2009dc-like SNe have generally suffered from large and uncertain amounts of host-galaxy extinction, which is negligible for ASASSN-15pz. Based on the color of ASASSN-15pz, we estimate a host extinction for SN 2009dc of E(B-V)_host=0.12 mag and confirm its high luminosity (M_B, peak[2009dc] approx -20.3 mag). The 2009dc-like SN population, which represents ~1% of SNe Ia, exhibits a range of peak luminosities, and do not fit onto the tight width-luminosity relation. Their optical light curves also show significant diversity of late-time (>~ 50 days) decline rates. The nebular-phase spectra provide powerful diagnostics to identify the 2009dc-like events as a distinct class of SNe Ia. We suggest referring to these sources using the phenomenology-based 2009dc-like SN Ia-pec instead of Super-Chandrasekhar SN Ia, which is based on an uncertain theoretical interpretation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا