ﻻ يوجد ملخص باللغة العربية
Evidence of high-velocity features such as those seen in the near-maximum spectra of some Type Ia Supernovae (eg SN 2000cx) has been searched for in the available SNIa spectra observed earlier than one week before B maximum. Recent observational efforts have doubled the number of SNeIa with very early spectra. Remarkably, all SNeIa with early data (7 in our RTN sample and 10 from other programmes) show signs of such features, to a greater or lesser degree, in CaII IR, and some also in SiII 6255A line. High-velocity features may be interpreted as abundance or density enhancements. Abundance enhancements would imply an outer region dominated by Si and Ca. Density enhancements may result from the sweeping up of circumstellar material by the highest velocity SN ejecta. In this scenario, the high incidence of HVFs suggests that a thick disc and/or a high-density companion wind surrounds the exploding white dwarf, as may be the case in Single Degenerate systems. Large-scale angular fluctuations in the radial density and abundance distribution may also be responsible: this could originate in the explosion, and would suggest a deflagration as the more likely explosion mechanism. CSM-interaction and surface fluctuations may coexist, possibly leaving different signatures on the spectrum. In some SNe the HVFs are narrowly confined in velocity, suggesting the ejection of blobs of burned material.
We present optical observations of type Ia supernova (SN) 2019ein, starting at 2 days after the estimated explosion date. The spectra and the light curves show that SN 2019ein belongs to the High-Velocity (HV) and Bload Line groups with relatively ra
The near-maximum spectra of the Type Ia SN 1999ee are reviewed. Two narrow absorption features corresponding to the strongest component of the CaII IR triplet appear in the spectra from 7 days before to 2 days after B-band maximum, at a high velocity
High-velocity features (HVFs) are spectral features in Type Ia supernovae (SNe Ia) that have minima indicating significantly higher (by greater than about 6000 km/s) velocities than typical photospheric-velocity features (PVFs). The PVFs are absorpti
We present 65 optical spectra of the Type Ia supernova SN 2012fr, of which 33 were obtained before maximum light. At early times SN 2012fr shows clear evidence of a high-velocity feature (HVF) in the Si II 6355 line which can be cleanly decoupled fro
We use recent observations of type Ia Supernova (SN Ia) rates to derive, on robust empirical grounds, the distribution of the delay time (DTD) between the formation of the progenitor star and its explosion as a SN. Our analysis finds: i) delay times