ﻻ يوجد ملخص باللغة العربية
Ultralight bosons can form clouds around rotating black holes if their Compton wavelength is comparable to the black hole size. The boson cloud spins down the black hole through a process called superradiance, lowering the black hole spin to a characteristic value. It has been suggested that spin measurements of the black holes detected by ground-based gravitational-wave detectors can be used to constrain the mass of ultralight bosons. Unfortunately, a measurement of the individual black hole spins is often uncertain, resulting in inconclusive results. Instead, we use hierarchical Bayesian inference to combine information from multiple gravitational-wave sources and obtain stronger constraints. We show that hundreds of high signal-to-noise ratio gravitational-wave detections are enough to exclude (confirm) the existence of non-interacting bosons in the mass range $left[10^{-13},3times 10^{-12}right]~rm{eV}$ $left([10^{-13},10^{-12}]~rm{eV}right)$. The precise number depends on the distribution of black hole spins at formation and the mass of the boson. From the few uninformative spin measurements of binary black hole mergers detected by LIGO and Virgo in their first two observing runs, we cannot draw statistically significant conclusions.
The ultralight boson is a promising candidate for dark matter. These bosons may form long-lived bosonic clouds surrounding rotating black holes via superradiance, acting as sources of gravity and affecting the propagation of gravitational waves aroun
Clouds of ultralight bosons - such as axions - can form around a rapidly spinning black hole, if the black hole radius is comparable to the bosons wavelength. The cloud rapidly extracts angular momentum from the black hole, and reduces it to a charac
We study the gravitational-wave (GW) signatures of clouds of ultralight bosons around black holes (BHs) in binary inspirals. These clouds, which are formed via superradiance instabilities for rapidly rotating BHs, produce distinct effects in the popu
The first observational run of the Advanced LIGO detectors, from September 12, 2015 to January 19, 2016, saw the first detections of gravitational waves from binary black hole mergers. In this paper we present full results from a search for binary bl
Observations of gravitational waves and their electromagnetic counterparts may soon uncover the existence of coalescing compact binary systems formed by a stellar-mass black hole and a neutron star. These mergers result in a remnant black hole, possi