ﻻ يوجد ملخص باللغة العربية
Clouds of ultralight bosons - such as axions - can form around a rapidly spinning black hole, if the black hole radius is comparable to the bosons wavelength. The cloud rapidly extracts angular momentum from the black hole, and reduces it to a characteristic value that depends on the bosons mass as well as on the black hole mass and spin. Therefore, a measurement of a black hole mass and spin can be used to reveal or exclude the existence of such bosons. Using the black holes released by LIGO and Virgo in their GWTC-2, we perform a simultaneous measurement of the black hole spin distribution at formation and the mass of the scalar boson. We find that the data strongly disfavors the existence of scalar bosons in the mass range between $1.3times10^{-13}~mathrm{eV}$ and $2.7times10^{-13}~mathrm{eV}$ for a decay constant $f_agtrsim 10^{14}~mathrm{GeV}$. The statistical evidence is mostly driven by the two {binary black holes} systems GW190412 and GW190517, which host rapidly spinning black holes. The region where bosons are excluded narrows down if these two systems merged shortly ($sim 10^5$ years) after the black holes formed.
Ultralight bosons can form clouds around rotating black holes if their Compton wavelength is comparable to the black hole size. The boson cloud spins down the black hole through a process called superradiance, lowering the black hole spin to a charac
Ultralight bosons can induce superradiant instabilities in spinning black holes, tapping their rotational energy to trigger the growth of a bosonic condensate. Possible observational imprints of these boson clouds include (i) direct detection of the
The ultralight boson is a promising candidate for dark matter. These bosons may form long-lived bosonic clouds surrounding rotating black holes via superradiance, acting as sources of gravity and affecting the propagation of gravitational waves aroun
We have examined gravitational wave echo signals for nine binary black hole merger events observed by Advanced LIGO and Virgo during the first and second observation runs. To construct an echo template, we consider Kerr spacetime, where the event hor
Ultralight bosons can be abundantly produced through superradiance process by a spinning black hole and form a bound state with hydrogen-like spectrum. We show that such a gravitational atom typically possesses anomalously large mass quadrupole and l