ترغب بنشر مسار تعليمي؟ اضغط هنا

A unified binary neutron star merger magnetar model for the Chandra X-ray transients CDF-S XT1 and XT2

123   0   0.0 ( 0 )
 نشر من قبل Hui Sun
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Two bright X-ray transients were reported from the Chandra Deep Field South archival data, namely CDF-S XT1 and XT2. Whereas the nature of the former is not identified, the latter was suggested as an excellent candidate for a rapidly spinning magnetar born from a binary neutron star (BNS) merger. Here we propose a unified model to interpret both transients within the framework of the BNS merger magnetar model. According to our picture, CDF-S XT2 is observed from the free zone where the magnetar spindown powered X-ray emission escapes freely, whereas CDF-S XT1 originates from the trapped zone where the X-ray emission is initially blocked by the dynamical ejecta and becomes transparent after the ejecta is pushed to a distance where Thomson optical depth drops below unity. We fit the magnetar model to the light curves of both transients and derived consistent parameters for the two events, with magnetic field, initial spin period and X-ray emission efficiency being ($B_p=10^{16},G$, $P=1.2,rm ms$, $eta = 0.001$) and ($B_p=10^{15.8},G$, $P=4.4, rm ms$, $eta = 0.001$) for XT1 and XT2, respectively. The isotropic equivalent ejecta mass of XT1 is $M_{rm ej} sim 10^{-3}$ $M_{odot}$, while it is not constrained for XT2. Our results suggest that more extreme magnetar parameters are required to have XT1 detected from the trapped zone. The model parameters for both events are generally consistent with those derived from SGRB X-ray plateau observations. The host galaxy properties of both transients are also consistent with those of SGRBs. The event rate densities of both XT1 and XT2 are consistent with that of BNS mergers.



قيم البحث

اقرأ أيضاً

82 - Di Xiao , Bin-Bin Zhang , 2019
Very recently citet{XueYQ2019} reported an important detection of the X-ray transient, CDF-S XT2, whose light curve is analogous to X-ray plateau features of gamma-ray burst afterglows. They suggested that this transient is powered by a remnant stabl e magnetar from a binary neutron star merger since several pieces of evidence (host galaxy, location, and event rate) all point toward such an assumption. In this paper, we revisit this scenario and confirm that this X-ray emission can be well explained by the internal gradual magnetic dissipation process in an ultra-relativistic wind of the newborn magnetar. We show that both the light curve and spectral evolution of CDF-S XT2 can be well fitted by such a model. Furthermore, we can probe some key properties of the central magnetar, such as its initial spin period, surface magnetic field strength and wind saturation Lorentz factor.
CDF-S XT1 is a fast-rising non-thermal X-ray transient detected by textit{Chandra} in the Deep-Field South Survey. Although various hypotheses have been suggested, the origin of this transient remains unclear. Here, we show that the observations of C DF-S XT1 are well explained as the X-ray afterglow produced by a relativistic structured jet viewed off-axis. We measure properties of the jet, showing that they are similar to those of GRB170817A, albeit at cosmological distances. We measure the observers viewing angle to be $theta_{textrm{obs}} = 10^{circ}pm3^{circ}$ and the core of the ultra-relativistic jet to be $theta_{textrm{core}} = 4.4^{circ}pm0.9^{circ}$, where the uncertainties are the $68%$ credible interval. The inferred properties and host galaxy combined with Hubble, radio, and optical non detections favour the hypothesis that CDF-S XT1 is the off-axis afterglow of a binary neutron star merger. We find that other previously suggested hypotheses are unable to explain all properties of CDF-S XT1. At a redshift of $z=2.23$, this is potentially the most distant observed neutron star merger to date and the first orphan afterglow of a short gamma-ray burst. We discuss the implications of a binary neutron star merger at such a high redshift for the star-formation rate in the early Universe, the nucleosynthesis of heavy elements, and the prospect of identifying other off-axis afterglows.
148 - Y. Q. Xue , X. C. Zheng , Y. Li 2019
Neutron star-neutron star mergers are known to be associated with short gamma-ray bursts. If the neutron star equation of state is sufficiently stiff, at least some of such mergers will leave behind a supramassive or even a stable neutron star that s pins rapidly with a strong magnetic field (i.e., a magnetar). Such a magnetar signature may have been observed as the X-ray plateau following a good fraction (up to 50%) of short gamma-ray bursts, and it has been expected that one may observe short gamma-ray burst-less X-ray transients powered by double neutron star mergers. A fast X-ray transient (CDF-S XT1) was recently found to be associated with a faint host galaxy whose redshift is unknown. Its X-ray and host-galaxy properties allow several possibleexplanations including a short gamma-ray burst seen off axis, a low-luminosity gamma-ray burst at high redshift, or a tidal disruption event involving an intermediate mass black hole and a white dwarf. Here we report a second X-ray transient, CDF-S XT2, that is associated with a galaxy at redshift z = 0.738. The light curve is fully consistent with being powered by a millisecond magnetar. More intriguingly, CDF-S XT2 lies in the outskirts of its star-forming host galaxy with a moderate offset from the galaxy center, as short bursts often do. The estimated event rate density of similar X-ray transients, when corrected to the local value, is consistent with the double neutron star merger rate density inferred from the detection of GW170817.
X-ray observations of some short gamma-ray bursts indicate that a long-lived neutron star can form as a remnant of a binary neutron star merger. We develop a gravitational-wave detection pipeline for a long-lived binary neutron star merger remnant gu ided by these counterpart electromagnetic observations. We determine the distance out to which a gravitational-wave signal can be detected with Advanced LIGO at design sensitivity and the Einstein Telescope using this method, guided by X-ray data from GRB140903A as an example. Such gravitational waves can in principle be detected out to $sim$ 20 Mpc for Advanced LIGO and $sim$ 450 Mpc for the Einstein Telescope assuming a fiducial ellipticity of $10^{-2}$. However, in practice we can rule out such high values of the ellipticity as the total energy emitted in gravitational waves would be greater than the total rotational energy budget of the system. We show how these observations can be used to place upper limits on the ellipticity using these energy considerations. For GRB140903A, the upper limit on the ellipticity is $10^{-3}$, which lowers the detectable distance to $sim$ 2 Mpc and $sim$ 45 Mpc for Advanced LIGO and the Einstein Telescope, respectively.
We report Chandra observations of GW170817, the first neutron star-neutron star merger discovered by the joint LIGO-Virgo Collaboration, and the first direct detection of gravitational radiation associated with an electromagnetic counterpart, Fermi s hort gamma-ray burst GRB 170817A. The event occurred on 2017 August 17 and subsequent observations identified an optical counterpart, SSS17a, coincident with NGC 4993 (~10 arcsec separation). Early Chandra (Delta t ~ 2 days) and Swift (Delta t ~ 1-3 days) observations yielded non-detections at the optical position, but ~9 days post-trigger Chandra monitoring revealed an X-ray point source coincident with SSS17a. We present two deep Chandra observations totaling ~95 ks, collected on 2017 September 01-02 (Delta t ~ 15-16 days). We detect X-ray emission from SSS17a with L_{0.3-10 keV} = 2.6^{+0.5}_{-0.4} x 10^38 ergs, and a power law spectrum of Gamma = 2.4 +/- 0.8. We find that the X-ray light curve from a binary NS coalescence associated with this source is consistent with the afterglow from an off-axis short gamma-ray burst, with a jet angled >~23 deg from the line of sight. This event marks both the first electromagnetic counterpart to a LIGO-Virgo gravitational-wave source and the first identification of an off-axis short GRB. We also confirm extended X-ray emission from NGC 4993 (L_{0.3-10 keV} ~ 9 x 10^38 ergs) consistent with its E/S0 galaxy classification, and report two new Chandra point sources in this field, CXOU J130948 and CXOU J130946.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا