ترغب بنشر مسار تعليمي؟ اضغط هنا

CDF-S XT1: The off-axis afterglow of a neutron star merger at $z=2.23$

125   0   0.0 ( 0 )
 نشر من قبل Nikhil Sarin
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

CDF-S XT1 is a fast-rising non-thermal X-ray transient detected by textit{Chandra} in the Deep-Field South Survey. Although various hypotheses have been suggested, the origin of this transient remains unclear. Here, we show that the observations of CDF-S XT1 are well explained as the X-ray afterglow produced by a relativistic structured jet viewed off-axis. We measure properties of the jet, showing that they are similar to those of GRB170817A, albeit at cosmological distances. We measure the observers viewing angle to be $theta_{textrm{obs}} = 10^{circ}pm3^{circ}$ and the core of the ultra-relativistic jet to be $theta_{textrm{core}} = 4.4^{circ}pm0.9^{circ}$, where the uncertainties are the $68%$ credible interval. The inferred properties and host galaxy combined with Hubble, radio, and optical non detections favour the hypothesis that CDF-S XT1 is the off-axis afterglow of a binary neutron star merger. We find that other previously suggested hypotheses are unable to explain all properties of CDF-S XT1. At a redshift of $z=2.23$, this is potentially the most distant observed neutron star merger to date and the first orphan afterglow of a short gamma-ray burst. We discuss the implications of a binary neutron star merger at such a high redshift for the star-formation rate in the early Universe, the nucleosynthesis of heavy elements, and the prospect of identifying other off-axis afterglows.



قيم البحث

اقرأ أيضاً

122 - Hui Sun , Ye Li , Binbin Zhang 2019
Two bright X-ray transients were reported from the Chandra Deep Field South archival data, namely CDF-S XT1 and XT2. Whereas the nature of the former is not identified, the latter was suggested as an excellent candidate for a rapidly spinning magneta r born from a binary neutron star (BNS) merger. Here we propose a unified model to interpret both transients within the framework of the BNS merger magnetar model. According to our picture, CDF-S XT2 is observed from the free zone where the magnetar spindown powered X-ray emission escapes freely, whereas CDF-S XT1 originates from the trapped zone where the X-ray emission is initially blocked by the dynamical ejecta and becomes transparent after the ejecta is pushed to a distance where Thomson optical depth drops below unity. We fit the magnetar model to the light curves of both transients and derived consistent parameters for the two events, with magnetic field, initial spin period and X-ray emission efficiency being ($B_p=10^{16},G$, $P=1.2,rm ms$, $eta = 0.001$) and ($B_p=10^{15.8},G$, $P=4.4, rm ms$, $eta = 0.001$) for XT1 and XT2, respectively. The isotropic equivalent ejecta mass of XT1 is $M_{rm ej} sim 10^{-3}$ $M_{odot}$, while it is not constrained for XT2. Our results suggest that more extreme magnetar parameters are required to have XT1 detected from the trapped zone. The model parameters for both events are generally consistent with those derived from SGRB X-ray plateau observations. The host galaxy properties of both transients are also consistent with those of SGRBs. The event rate densities of both XT1 and XT2 are consistent with that of BNS mergers.
137 - E. Troja , G. Ryan , L. Piro 2018
The recent discovery of a faint gamma-ray burst (GRB) coincident with the gravitational wave (GW) event GW 170817 revealed the existence of a population of low-luminosity short duration gamma-ray transients produced by neutron star mergers in the nea rby Universe. These events could be routinely detected by existing gamma-ray monitors, yet previous observations failed to identify them without the aid of GW triggers. Here we show that GRB150101B was an analogue of GRB170817A located at a cosmological distance. GRB 150101B was a faint short duration GRB characterized by a bright optical counterpart and a long-lived X-ray afterglow. These properties are unusual for standard short GRBs and are instead consistent with an explosion viewed off-axis: the optical light is produced by a luminous kilonova component, while the observed X-rays trace the GRB afterglow viewed at an angle of ~13 degrees. Our findings suggest that these properties could be common among future electromagnetic counterparts of GW sources.
The jet breaks in the afterglow lightcurves of short gamma-ray bursts (SGRBs), rarely detected so far, are crucial for estimating the half-opening angles of the ejecta ($theta_{rm j}$) and hence the neutron star merger rate. In this work we report th e detection of jet decline behaviors in GRB 150424A and GRB 160821B and find $theta_{rm j}sim 0.1$ rad. Together with five events reported before 2015 and other three identified recently (GRB 050709, GRB 060614 and GRB 140903A), we have a sample consisting of nine SGRBs and one long-short GRB with reasonably estimated $theta_{rm j}$. In particular, three {it Swift} bursts in the sample have redshifts $zleq 0.2$, with which we estimate the local neutron star merger rate density {to be $sim 1109^{+1432}_{-657}~{rm Gpc^{-3}~yr^{-1}}$ or $162^{+140}_{-83} {rm Gpc^{-3}yr^{-1}}$ if the narrowly-beamed GRB 061201 is excluded}. Inspired by the typical $theta_{rm j}sim 0.1$ rad found currently, we further investigate whether the off-beam GRBs (in the uniform jet model) or the off-axis events (in the structured jet model) can significantly enhance the GRB/GW association or not. For the former the enhancement is at most moderate, while for the latter the enhancement can be much greater and a high GRB/GW association probability of $sim 10%$ is possible. We also show that the data of GRB 160821B may contain a macronova/kilonova emission component with a temperature of $sim 3100$ K at $sim 3.6$ days after the burst and more data are needed to ultimately clarify.
Binary neutron-star mergers (BNSMs) are among the most readily detectable gravitational-wave (GW) sources with LIGO. They are also thought to produce short $gamma$-ray bursts (SGRBs), and kilonovae that are powered by r-process nuclei. Detecting thes e phenomena simultaneously would provide an unprecedented view of the physics during and after the merger of two compact objects. Such a Rosetta Stone event was detected by LIGO/Virgo on 17 August 2017 at a distance of $sim 44$ Mpc. We monitored the position of the BNSM with ALMA at 338.5 GHz and GMRT at 1.4 GHz, from 1.4 to 44 days after the merger. Our observations rule out any afterglow more luminous than $3times 10^{26}~{rm erg,s}^{-1},{rm Hz}^{-1}$ in these bands, probing $>$2--4 dex fainter than previous SGRB limits. We match these limits, in conjunction with public data announcing the appearance of X-ray and radio emission in the weeks after the GW event, to templates of off-axis afterglows. Our broadband modeling suggests that GW170817 was accompanied by a SGRB and that the GRB jet, powered by $E_{rm AG,,iso}sim10^{50}$~erg, had a half-opening angle of $sim20^circ$, and was misaligned by $sim41^circ$ from our line of sight. The data are also consistent with a more collimated jet: $E_{rm AG,,iso}sim10^{51}$~erg, $theta_{1/2,,rm jet}sim5^circ$, $theta_{rm obs}sim17^circ$. This is the most conclusive detection of an off-axis GRB afterglow and the first associated with a BNSM-GW event to date. Assuming a uniform top-hat jet, we use the viewing angle estimates to infer the initial bulk Lorentz factor and true energy release of the burst.
The jet structure of short gamma-ray bursts (GRBs) has been controversial after the detection of GRB 170817A as the electromagnetic counterparts to the gravitational wave event GW170817. Different authors use different jet structures for calculating the afterglow light curves. We formulated a method to inversely reconstruct a jet structure from a given off-axis GRB afterglow, without assuming any functional form of the structure. By systematically applying our inversion method, we find that more diverse jet structures are consistent with the observed afterglow of GRB 170817A within errors: such as hollow-cone, spindle, Gaussian, and power-law jet structures. In addition, the total energy of the reconstructed jet is arbitrary, proportional to the ambient density $n_0$, with keeping the same jet shape if the parameters satisfy the degeneracy combination $n_0 varepsilon_mathrm{B}^{(p+1)/(p+5)} varepsilon_mathrm{e}^{4(p-1)/(p+5)} = mathrm{const.}$. Observational accuracy less than $sim 6$ per cent is necessary to distinguish the different shapes, while the degeneracy of the energy scaling would be broken by observing the spectral breaks and viewing angle. Future events in denser environment with brighter afterglows and observable spectral breaks are ideal for our inversion method to pin down the jet structure, providing the key to the jet formation and propagation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا