ﻻ يوجد ملخص باللغة العربية
The procedure by means of which the occurrence time of an impending mainshock can be identified by analyzing in natural time the seismicity in the candidate area subsequent to the recording of a precursory Seismic Electric Signals (SES) activity is reviewed. Here, we report the application of this procedure to an Mw5.4 mainshock that occurred in Greece on 17 November 2014 and was strongly felt in Athens. This mainshock (which is pretty rare since it is the strongest in that area for more than half a century) was preceded by an SES activity recorded on 27 July 2014 and the results of the natural time analysis reveal that the system approached the critical point (mainshock occurrence) early in the morning on 15 November 2014. SES activities that have been recently recorded are also presented. Furthermore, in a Note we discuss the case of the Mw5.3 earthquake that was also strongly felt in Athens on 19 July 2019 (Parnitha fault).
In line of the intermediate-term monitoring of seismic activity aimed at prediction of the world largest earthquakes the seismic dynamics of the Earths lithosphere is analysed as a single whole, which is the ultimate scale of the complex hierarchical
Molecular dynamics is one of the most commonly used approaches for studying the dynamics and statistical distributions of many physical, chemical, and biological systems using atomistic or coarse-grained models. It is often the case, however, that th
In the last years complex networks tools contributed to provide insights on the structure of research, through the study of collaboration, citation and co-occurrence networks. The network approach focuses on pairwise relationships, often compressing
Magnetic survey techniques have been used in many years in an attempt to better evaluate the likelihood of recoverable hydrocarbon reservoirs by determining the depth and pattern of sedimentary rock formations containing magnetic minerals, such as ma
We propose a thermodynamic version of the Axelrod model of social influence. In one-dimensional (1D) lattices, the thermodynamic model becomes a coupled Potts model with a bonding interaction that increases with the site matching traits. We analytica