ﻻ يوجد ملخص باللغة العربية
Molecular dynamics is one of the most commonly used approaches for studying the dynamics and statistical distributions of many physical, chemical, and biological systems using atomistic or coarse-grained models. It is often the case, however, that the interparticle forces drive motion on many time scales, and the efficiency of a calculation is limited by the choice of time step, which must be sufficiently small that the fastest force components are accurately integrated. Multiple time-stepping algorithms partially alleviate this inefficiency by assigning to each time scale an appropriately chosen step-size. However, such approaches are limited by resonance phenomena, wherein motion on the fastest time scales limits the step sizes associated with slower time scales. In atomistic models of biomolecular systems, for example, resonances limit the largest time step to around 5-6 fs. In this paper, we introduce a set of stochastic isokinetic equations of motion that are shown to be rigorously ergodic and that can be integrated using a multiple time-stepping algorithm that can be easily implemented in existing molecular dynamics codes. The technique is applied to a simple, illustrative problem and then to a more realistic system, namely, a flexible water model. Using this approach outer time steps as large as 100 fs are shown to be possible.
We develop a resource efficient step-merged quantum imaginary time evolution approach (smQITE) to solve for the ground state of a Hamiltonian on quantum computers. This heuristic method features a fixed shallow quantum circuit depth along the state e
Here we present a program aimed at free-energy calculations in molecular systems. It consists of a series of routines that can be interfaced with the most popular classical molecular dynamics (MD) codes through a simple patching procedure. This leave
We introduce a variant of the Hybrid Monte Carlo (HMC) algorithm to address large-deviation statistics in stochastic hydrodynamics. Based on the path-integral approach to stochastic (partial) differential equations, our HMC algorithm samples space-ti
Kinetic energy equipartition is a premise for many deterministic and stochastic molecular dynamics methods that aim at sampling a canonical ensemble. While this is expected for real systems, discretization errors introduced by the numerical integrati
When simulating molecular systems using deterministic equations of motion (e.g., Newtonian dynamics), such equations are generally numerically integrated according to a well-developed set of algorithms that share commonly agreed-upon desirable proper