ﻻ يوجد ملخص باللغة العربية
We consider a system of two kinetic equations modelling a multicellular system : The first equation governs the dynamics of cells, whereas the second kinetic equation governs the dynamics of the chemoattractant. For this system, we first prove the existence of global-in-time solution. The proof of existence relies on a fixed point procedure after establishing some a priori estimates. Then, we investigate the hyperbolic limit after rescaling of the kinetic system. It leads to a macroscopic system of Cattaneo type. The rigorous derivation is established thanks to a compactness method.
Ion transport in biological tissues is crucial in the study of many biological and pathological problems. Some multi-cellular structures, like smooth muscles on the vessel walls, could be treated as periodic bi-domain structures, which consist of int
In this paper, we first prove that the cubic, defocusing nonlinear Schrodinger equation on the two dimensional hyperbolic space with radial initial data in $H^s(mathbb{H}^2)$ is globally well-posed and scatters when $s > frac{3}{4}$. Then we extend t
We develop a version of Haar and Holmgren methods which applies to discontinuous solutions of nonlinear hyperbolic systems and allows us to control the L1 distance between two entropy solutions. The main difficulty is to cope with linear hyperbolic s
The present paper is devoted to finding a necessary and sufficient condition on the occurence of scattering for the regularly hyperbolic systems with time-dependent coefficients whose time-derivatives are integrable over the real line. More precisely
Moment expansions are used as model reduction technique in kinetic gas theory to approximate the Boltzmann equation. Rarefied gas models based on so-called moment equations became increasingly popular recently. However, in a seminal paper by Holway [