ﻻ يوجد ملخص باللغة العربية
In this paper, we first prove that the cubic, defocusing nonlinear Schrodinger equation on the two dimensional hyperbolic space with radial initial data in $H^s(mathbb{H}^2)$ is globally well-posed and scatters when $s > frac{3}{4}$. Then we extend the result to nonlineraities of order $p>3$. The result is proved by extending the high-low method of Bourgain in the hyperbolic setting and by using a Morawetz type estimate proved by the first author and Ionescu.
We prove asymptotic completeness in the energy space for the nonlinear Schrodinger equation posed on hyperbolic space in the radial case, in space dimension at least 4, and for any energy-subcritical, defocusing, power nonlinearity. The proof is base
Boundary value problems for integrable nonlinear evolution PDEs formulated on the half-line can be analyzed by the unified method introduced by one of the authors and used extensively in the literature. The implementation of this general method to th
We study the construction of the Gibbs measures for the {it focusing} mass-critical fractional nonlinear Schrodinger equation on the multi-dimensional torus. We identify the sharp mass threshold for normalizability and non-normalizability of the focu
We prove global existence of instantaneously complete Yamabe flows on hyperbolic space of arbitrary dimension $mgeq3$. The initial metric is assumed to be conformally hyperbolic with conformal factor and scalar curvature bounded from above. We do not
We study the existence and stability of ground state solutions or solitons to a nonlinear stationary equation on hyperbolic space. The method of concentration compactness applies and shows that the results correlate strongly to those of Euclidean space.