ﻻ يوجد ملخص باللغة العربية
Ultraviolet (UV) plasmonics aims at combining the strong absorption bands of molecules in the UV range with the intense electromagnetic fields of plasmonic nanostructures to promote surface-enhanced spectroscopy and catalysis. Currently, aluminum is the most widely used metal for UV plasmonics, and is generally assumed to be remarkably stable thanks to its natural alumina layer passivating the metal surface. However, we find here that under 266 nm UV illumination, aluminum can undergo a dramatic photocorrosion in water within a few tens of seconds and even at low average UV powers. This aluminum instability in water environments critically limits the UV plasmonics applications. We show that the aluminum photocorrosion is related to the nonlinear absorption by water in the UV range leading to the production of hydroxyl radicals. Different corrosion protection approaches are tested using scavengers for reactive oxygen species and polymer layers deposited on top of the aluminum structures. Using optimized protection, we achieve a ten-fold increase in the available UV power range leading to no visible photocorrosion effects. This technique is crucial to achieve stable use of aluminum nanostructures for UV plasmonics in aqueous solutions.
Extending plasmonics into the ultraviolet range imposes the use of aluminum to achieve the best optical performance. However, water corrosion is a major limiting issue for UV aluminum plasmonics, as this phenomenon occurs significantly faster in pres
Plasmonics applications have been extending into the ultraviolet region of the electromagnetic spectrum. Unfortunately the commonly used noble metals have intrinsic optical properties that limit their use above 350 nm. Aluminum is probably the most s
Two-dimensional materials exhibit a fascinating range of electronic and photonic properties vital for nanophotonics, quantum optics and emerging quantum information technologies. Merging concepts from the fields of ab initio materials science and nan
We report on the first beta gallium oxide (beta-Ga2O3) crystal feedback oscillator built by employing a vibrating beta-Ga2O3 nanoresonator as the frequency reference for real-time middle ultraviolet (MUV) light detection. We fabricate suspended beta-
In the present investigation, a strongly bonded strip of an aluminium-magnesium based alloy AA5086 is successfully produced through accumulative roll bonding (ARB). A maximum of up to eight passes has been used for the purpose. Microstructural charac