ترغب بنشر مسار تعليمي؟ اضغط هنا

Host galaxies of high-redshift extremely red and obscured quasars

96   0   0.0 ( 0 )
 نشر من قبل Nadia L. Zakamska
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present Hubble Space Telescope 1.4-1.6 micron images of the hosts of ten extremely red quasars (ERQs) and six type 2 quasar candidates at z=2-3. ERQs, whose bolometric luminosities range between 10^47 and 10^48 erg/sec, show spectroscopic signs of powerful ionized winds, whereas type 2 quasar candidates are less luminous and show only mild outflows. After performing careful subtraction of the quasar light, we clearly detect almost all host galaxies. The median rest-frame B-band luminosity of the ERQ hosts in our sample is 10^11.2 L_Sun, or 4 L* at this redshift. Two of the ten hosts of ERQs are in ongoing mergers. The hosts of the type 2 quasar candidates are 0.6 dex less luminous, with 2/6 in likely ongoing mergers. Intriguingly, despite some signs of interaction and presence of low-mass companions, our objects do not show nearly as much major merger activity as do high-redshift radio-loud galaxies and quasars. In the absence of an overt connection to major ongoing gas-rich merger activity, our observations are consistent with a model in which the near-Eddington accretion and strong feedback of ERQs are associated with relatively late stages of mergers resulting in early-type remnants. These results are in some tension with theoretical expectations of galaxy formation models, in which rapid black hole growth occurs within a short time of a major merger. Type 2 quasar candidates are less luminous, so they may instead be powered by internal galactic processes.

قيم البحث

اقرأ أيضاً

Quasar-driven outflows must have made their most significant impact on galaxy formation during the epoch when massive galaxies were forming most rapidly. To study the impact of quasar feedback we conducted rest-frame optical integral field spectrogra ph (IFS) observations of three extremely red quasars (ERQs) and one type-2 quasar at $z=2-3$, obtained with the NIFS and OSIRIS instruments at the Gemini North and W. M. Keck Observatory with the assistance of laser-guided adaptive optics. We use the kinematics and morphologies of the [OIII] 5007AA and H$alpha$ 6563AA emission lines redshifted into the near-infrared to gauge the extents, kinetic energies and momentum fluxes of the ionized outflows in the quasars host galaxies. For the ERQs, the galactic-scale outflows are likely driven by radiation pressure in a high column density environment or due to an adiabatic shock. For the type-2 quasar, the outflow is driven by radiation pressure in a low column density environment or due to a radiative shock. The outflows in the ERQs carry a significant amount of energy ranging from 0.05-5$%$ of the quasars bolometric luminosity, powerful enough to have a significant impact on the quasar host galaxies. However, the outflows are likely only impacting the inner few kpc of each host galaxy. The observed outflow sizes are generally smaller than other ionized outflows observed at high redshift. The high ratio between the momentum flux of the ionized outflow and the photon momentum flux from the quasar accretion disk and high nuclear obscuration makes these ERQs great candidates for transitional objects where the outflows are likely responsible for clearing material in the inner regions of each galaxy, unveiling the quasar accretion disk at optical wavelengths.
The most heavily-obscured, luminous quasars might represent a specific phase of the evolution of actively accreting supermassive black holes and their host galaxies, possibly related to mergers. We investigated a sample of the most luminous quasars a t $zapprox 1-3$ in the GOODS fields, selected in the mid-infrared band through detailed spectral energy distribution (SED) decomposition. The vast majority of these quasars (~80%) are obscured in the X-ray band and ~30% of them to such an extent, that they are undetected in some of the deepest (2 and 4 Ms) Chandra X-ray data. Although no clear relation is found between the star-formation rate of the host galaxies and the X-ray obscuration, we find a higher incidence of heavily-obscured quasars in disturbed/merging galaxies compared to the unobscured ones, thus possibly representing an earlier stage of evolution, after which the system is relaxing and becoming unobscured.
Quasars may have played a key role in limiting the stellar mass of massive galaxies. Identifying those quasars in the process of removing star formation fuel from their hosts is an exciting ongoing challenge in extragalactic astronomy. In this paper we present X-ray observations of eleven extremely red quasars (ERQs) with $L_{rm bol}sim 10^{47}$ erg s$^{-1}$ at $z=1.5-3.2$ with evidence for high-velocity ($v > 1000$ km s$^{-1}$) [OIII]$lambda$5007AA outflows. X-rays allow us to directly probe circumnuclear obscuration and to measure the instantaneous accretion luminosity. We detect ten out of eleven extremely red quasars available in targeted and archival data. Using a combination of X-ray spectral fitting and hardness ratios, we find that all of the ERQs show signs of absorption in the X-rays with inferred column densities of $N_{rm H}approx 10^{23}$ cm$^{-2}$, including four Compton-thick candidates ($N_{rm H} > 10^{24}$ cm$^{-2}$). We stack the X-ray emission of the seven weakly detected sources, measuring an average column density of $N_{rm H}sim 8times 10^{23}$ cm$^{-2}$. The absorption-corrected (intrinsic) $2-10$ keV X-ray luminosity of the stack is $2.7times 10^{45}$ erg s$^{-1}$, consistent with X-ray luminosities of type 1 quasars of the same infrared luminosity. Thus, we find that ERQs are a highly obscured, borderline Compton-thick population, and based on optical and infrared data we suggest that these objects are partially hidden by their own equatorial outflows. However, unlike some quasars with known outflows, ERQs do not appear to be intrinsically underluminous in X-rays for their bolometric luminosity. Our observations indicate that low X-rays are not necessary to enable some types of radiatively driven winds.
119 - A. Humphrey 2015
We investigate the nature of seven unusual radio galaxies from the 5C catalogue that were previously known to have extremely red R-K colours, and for which emission lines were previously found to be weak or absent in their optical spectra. We present and discuss u, g, or r images of these radio galaxies, obtained using the Optical System for Imaging and low-Intermediate-Resolution Integrated Spectroscopy (OSIRIS) at the Gran Telescopio Canarias (GTC). We have detected all seven targets in our g-band imaging. Their optical emission is extended, and we tentatively detect a radio-optical alignment effect in this sample. A subset of our sample (three sources) shows broad-band spectral energy distributions that flatten out near the wavelength range of the g-band, implying a dominant contribution there due to young stars and/or scattered or reprocessed radiation from the active nucleus.
Observations of $z gtrsim 6$ quasars provide information on the early phases of the most massive black holes (MBHs) and galaxies. Current observations at sub-mm wavelengths trace cold and warm gas, and future observations will extend information to o ther gas phases and the stellar properties. The goal of this study is to examine the gas life cycle in a $z gtrsim 6$ quasar: from accretion from the halo to the galaxy and all the way into the MBH, to how star formation and the MBH itself affect the gas properties. Using a very-high resolution cosmological zoom-in simulation of a $z=7$ quasar including state-of-the-art non-equilibrium chemistry, MBH formation, growth and feedback, we investigate the distribution of the different gas phases in the interstellar medium across cosmic time. We assess the morphological evolution of the quasar host using different tracers (star- or gas-based) and the thermodynamic distribution of the MBH accretion-driven outflows, finding that obscuration in the disc is mainly due to molecular gas, with the atomic component contributing at larger scales and/or above/below the disc plane. Moreover, our results also show that molecular outflows, if present, are more likely the result of gas being lifted near the MBH than production within the wind because of thermal instabilities. Finally, we also discuss how different gas phases can be employed to dynamically constrain the MBH mass, and argue that resolutions below $sim 100$ pc yield unreliable estimates because of the strong contribution of the nuclear stellar component to the potential at larger scales.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا