ترغب بنشر مسار تعليمي؟ اضغط هنا

High redshift extremely red quasars in X-rays

248   0   0.0 ( 0 )
 نشر من قبل Andy Goulding
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quasars may have played a key role in limiting the stellar mass of massive galaxies. Identifying those quasars in the process of removing star formation fuel from their hosts is an exciting ongoing challenge in extragalactic astronomy. In this paper we present X-ray observations of eleven extremely red quasars (ERQs) with $L_{rm bol}sim 10^{47}$ erg s$^{-1}$ at $z=1.5-3.2$ with evidence for high-velocity ($v > 1000$ km s$^{-1}$) [OIII]$lambda$5007AA outflows. X-rays allow us to directly probe circumnuclear obscuration and to measure the instantaneous accretion luminosity. We detect ten out of eleven extremely red quasars available in targeted and archival data. Using a combination of X-ray spectral fitting and hardness ratios, we find that all of the ERQs show signs of absorption in the X-rays with inferred column densities of $N_{rm H}approx 10^{23}$ cm$^{-2}$, including four Compton-thick candidates ($N_{rm H} > 10^{24}$ cm$^{-2}$). We stack the X-ray emission of the seven weakly detected sources, measuring an average column density of $N_{rm H}sim 8times 10^{23}$ cm$^{-2}$. The absorption-corrected (intrinsic) $2-10$ keV X-ray luminosity of the stack is $2.7times 10^{45}$ erg s$^{-1}$, consistent with X-ray luminosities of type 1 quasars of the same infrared luminosity. Thus, we find that ERQs are a highly obscured, borderline Compton-thick population, and based on optical and infrared data we suggest that these objects are partially hidden by their own equatorial outflows. However, unlike some quasars with known outflows, ERQs do not appear to be intrinsically underluminous in X-rays for their bolometric luminosity. Our observations indicate that low X-rays are not necessary to enable some types of radiatively driven winds.

قيم البحث

اقرأ أيضاً

We present Hubble Space Telescope 1.4-1.6 micron images of the hosts of ten extremely red quasars (ERQs) and six type 2 quasar candidates at z=2-3. ERQs, whose bolometric luminosities range between 10^47 and 10^48 erg/sec, show spectroscopic signs of powerful ionized winds, whereas type 2 quasar candidates are less luminous and show only mild outflows. After performing careful subtraction of the quasar light, we clearly detect almost all host galaxies. The median rest-frame B-band luminosity of the ERQ hosts in our sample is 10^11.2 L_Sun, or 4 L* at this redshift. Two of the ten hosts of ERQs are in ongoing mergers. The hosts of the type 2 quasar candidates are 0.6 dex less luminous, with 2/6 in likely ongoing mergers. Intriguingly, despite some signs of interaction and presence of low-mass companions, our objects do not show nearly as much major merger activity as do high-redshift radio-loud galaxies and quasars. In the absence of an overt connection to major ongoing gas-rich merger activity, our observations are consistent with a model in which the near-Eddington accretion and strong feedback of ERQs are associated with relatively late stages of mergers resulting in early-type remnants. These results are in some tension with theoretical expectations of galaxy formation models, in which rapid black hole growth occurs within a short time of a major merger. Type 2 quasar candidates are less luminous, so they may instead be powered by internal galactic processes.
65 - E. Bertola , M. Dadina , M. Cappi 2020
Theoretical models of wind-driven feedback from Active Galactic Nuclei (AGN) often identify Ultra-fast outflows (UFOs) as being the main cause for generating galaxy-size outflows, possibly the main actors in establishing the so-called AGN-galaxy co-e volution. UFOs are well characterized in local AGN but much less is known in quasars at the cosmic time when SF and AGN activity peaked ($zsimeq1-3$). It is therefore mandatory to search for evidences of UFOs in high-$z$ sources to test the wind-driven AGN feedback models. Here we present a study of Q2237+030, the Einstein Cross, a quadruply-imaged radio-quiet lensed quasar located at $z=1.695$. We performed a systematic and comprehensive temporally and spatially resolved X-ray spectral analysis of all the available Chandra and XMM-Newton data (as of September 2019). We find clear evidence for spectral variability, possibly due to absorption column density (or covering fraction) variability intrinsic to the source. We detect, for the first time in this quasar, a fast X-ray wind outflowing at $v_{rm out}simeq0.1c$ that would be powerful enough ($dot{E}_{rm kin}simeq0.1 L_{rm bol}$) to significantly affect the host galaxy evolution. We report also on the possible presence of an even faster component of the wind ($v_{rm out}sim0.5c$). Given the large sample and long time interval spanned by the analyzed X-ray data, we are able to roughly estimate, for the first time in a high-$z$ quasar, the wind duty cycle as $approx0.46,(0.31)$ at $90%,(95%)$ confidence level. Finally, we also confirm the presence of a Fe K$alpha$ emission line with variable energy, which we discuss in the light of microlensing effects as well as considering our findings on the source.
Red quasars are candidate young objects in an early transition stage of massive galaxy evolution. Our team recently discovered a population of extremely red quasars (ERQs) in the Baryon Oscillation Spectroscopic Survey (BOSS) that has a suite of pecu liar emission-line properties including large rest equivalent widths (REWs), unusual wingless line profiles, large NV/Lya, NV/CIV, SiIV/CIV and other flux ratios, and very broad and blueshifted [OIII] 5007. Here we present a new catalog of CIV and NV emission-line data for 216,188 BOSS quasars to characterize the ERQ line properties further. We show that they depend sharply on UV-to-mid-IR color, secondarily on REW(CIV), and not at all on luminosity or the Baldwin Effect. We identify a core sample of 97 ERQs with nearly uniform peculiar properties selected via i-W3 > 4.6 (AB) and REW(CIV) > 100 A at redshifts 2.0-3.4. A broader search finds 235 more red quasars with similar unusual characteristics. The core ERQs have median luminosity log L (ergs/s) ~ 47.1, sky density 0.010 deg^-2, surprisingly flat/blue UV spectra given their red UV-to-mid-IR colors, and common outflow signatures including BALs or BAL-like features and large CIV emission-line blueshifts. Their SEDs and line properties are inconsistent with normal quasars behind a dust reddening screen. We argue that the core ERQs are a unique obscured quasar population with extreme physical conditions related to powerful outflows across the line-forming regions. Patchy obscuration by small dusty clouds could produce the observed UV extinctions without substantial UV reddening.
91 - Ohad Shemmer 2017
We report on the second installment of an X-ray monitoring project of seven luminous radio-quiet quasars (RQQs). New {sl Chandra} observations of four of these, at $4.10leq zleq4.35$, yield a total of six X-ray epochs, per source, with temporal basel ines of $sim850-1600$ days in the rest frame. These data provide the best X-ray light curves for RQQs at $z>4$, to date, enabling qualitative investigations of the X-ray variability behavior of such sources for the first time. On average, these sources follow the trend of decreasing variability amplitude with increasing luminosity, and there is no evidence for X-ray variability increasing toward higher redshifts, in contrast with earlier predictions of potential evolutionary scenarios. An ensemble variability structure function reveals that their variability level remains relatively flat across $approx20 - 1000$ days in the rest frame and it is generally lower than that of three similarly luminous RQQs at $1.33leq zleq 2.74$ over the same temporal range. We discuss possible explanations for the increased variability of the lower-redshift subsample and, in particular, whether higher accretion rates play a leading role. Near-simultaneous optical monitoring of the sources at $4.10leq zleq 4.35$ indicates that none is variable on $approx1$-day timescales, although flux variations of up to $sim25$% are observed on $approx100$-day timescales, typical of RQQs at similar redshifts. Significant optical-X-ray spectral slope variations observed in two of these sources are consistent with the levels observed in luminous RQQs and are dominated by X-ray variations.
133 - M. Wold 2003
We have examined the occurrence of Extremely Red Objects (EROs) in the fields of 13 luminous quasars (11 radio-loud and two radio-quiet) at 1.8 < z < 3.0. The average surface density of K_s<=19 mag EROs is two-three times higher than in large, random -field surveys, and the excess is significant at the $approx 3$ sigma level even after taking into account that the ERO distribution is highly inhomogeneous. This is the first systematic investigation of the surface density of EROs in the fields of radio-loud quasars above z=2, and shows that a large number of the fields contain clumps of EROs, similar to what is seen only in the densest areas in random-field surveys. The high surface densities and angular distribution of EROs suggest that the excess originates in high-z galaxy concentrations, possibly young clusters of galaxies. The fainter EROs at K_s>19 mag show some evidence of being more clustered in the immediate 20 arcsec region around the quasars, suggesting an association with the quasars.Comparing with predictions from spectral synthesis models, we find that if the $K_sapprox19$ mag ERO excess is associated with the quasars at $zapprox2$, their magnitudes are typical of >~ L* passively evolving galaxies formed at z~3.5 (Omega_m=0.3, Omega_l=0.7, and H0=70 km/s/Mpc). Another interpretation of our results is that the excess originates in concentrations of galaxies at $zapprox1$ lying along the line of sight to the quasars. If this is the case, the EROs may be tracing massive structures responsible for a magnification bias of the quasars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا