ﻻ يوجد ملخص باللغة العربية
Over 50 years ago, Anderson and Blount proposed that ferroelectric-like structural phase transitions may occur in metals, despite the expected screening of the Coulomb interactions that often drive polar transitions. Recently, theoretical treatments have suggested that such transitions require the itinerant electrons be decoupled from the soft transverse optical phonons responsible for polar order. However, this decoupled electron mechanism (DEM) has yet to be experimentally observed. Here we utilize ultrafast spectroscopy to uncover evidence of the DEM in LiOsO$_3$, the first known band metal to undergo a thermally driven polar phase transition ($T_c$ =140 K). We demonstrate that intra-band photo-carriers relax by selectively coupling to only a subset of the phonon spectrum, leaving as much as 60 % of the lattice heat capacity decoupled. This decoupled heat capacity is shown to be consistent with a previously undetected and partially displacive TO polar mode, indicating the DEM in LiOsO$_3$.
Rare-earth nickelates exhibit a remarkable metal-insulator transition accompanied by a structural transition associated with a lattice `breathing mode. Using model considerations and first-principles calculations, we present a theory of this phase tr
Metallic LiOsO$_3$ undergoes a continuous ferroelectric-like structural phase transition below $T_c$ = 140 K to realize a polar metal. To understand the microscopic interactions that drive this transition, we study its critical behavior above $T_c$ v
We report the observation of an unusual behavior of highly extended 5d electrons in Y2Ir2O7 belonging to pyrochlore family of great current interest using high resolution photoemission spectroscopy. The experimental bulk spectra reveal an intense low
The antiferromagnetic Ruddlesden-Popper ruthenate Ca$_3$Ru$_2$O$_7$ is a model polar metal, combining inversion symmetry breaking with metallic conductivity; however, its low temperature ($T < 48$ K) crystal structure and Fermi surface topology remai
Negative compressibility is a sign of thermodynamic instability of open or non-equilibrium systems. In quantum materials consisting of multiple mutually coupled subsystems, the compressibility of one subsystem can be negative if it is countered by po