ﻻ يوجد ملخص باللغة العربية
Efficient monitoring of airborne particulate matter (PM), especially particles with aerodynamic diameter less than 2.5 um (PM2.5), is crucial for improving public health. Reliable information on the concentration, size distribution and chemical characteristics of PMs is key to evaluating air pollution and identifying its sources. Standard methods for PM2.5 characterization require sample collection from the atmosphere and post-analysis using sophisticated equipment in a laboratory environment, and are normally very time-consuming. Although optical methods based on analysis of scattering of free-space laser beams or evanescent fields are in principle suitable for real-time particle counting and sizing, lack of knowledge of the refractive index in these methods not only leads to inevitable sizing ambiguity but also prevents identification of the particle material. In the case of evanescent wave detection, the system lifetime is strongly limited by adhesion of particles to the surfaces. Here we report a novel technique for airborne particle metrology based on hollow-core photonic crystal fibre. It offers in situ particle counting, sizing and refractive index measurement with effectively unlimited device lifetime, and relies on optical forces that automatically capture airborne particles in front of the hollow core and propel them into the fibre. The resulting transmission drop, together with the time-of-flight of the particles passing through the fibre, provide unambiguous mapping of particle size and refractive index with high accuracy. The technique represents a considerable advance over currently available real-time particle metrology systems, and can be directly applied to monitoring air pollution in the open atmosphere as well as precise particle characterization in a local environment such as a closed room or a reaction vessel.
The exceptionally large polarisability of highly excited Rydberg atoms (six orders of magnitude higher than ground-state atoms) makes them of great interest in fields such as quantum optics, quantum computing, quantum simulation and metrology. If how
Alkali-filled hollow-core fibres are a promising medium for investigating light-matter interactions, especially at the single-photon level, due to the tight confinement of light and high optical depths achievable by light-induced atomic desorption. H
We demonstrate a surface-electrode ion trap fabricated using techniques transferred from the manufacture of photonic-crystal fibres. This provides a relatively straightforward route for realizing traps with an electrode structure on the 100 micron sc
Coherent interactions between electromagnetic and matter waves lie at the heart of quantum science and technology. However, the diffraction nature of light has limited the scalability of many atom-light based quantum systems. Here, we use the optical
We demonstrate a fiber-integrated Fabry-Perot cavity formed by attaching a pair of dielectric metasurfaces to the ends of a hollow-core photonic-crystal fiber segment. The metasurfaces consist of perforated membranes designed as photonic-crystal slab