ترغب بنشر مسار تعليمي؟ اضغط هنا

Fabry-Perot Cavity Formed with Dielectric Metasurfaces in a Hollow-Core Fiber

95   0   0.0 ( 0 )
 نشر من قبل Jeremy Flannery
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate a fiber-integrated Fabry-Perot cavity formed by attaching a pair of dielectric metasurfaces to the ends of a hollow-core photonic-crystal fiber segment. The metasurfaces consist of perforated membranes designed as photonic-crystal slabs that act as planar mirrors but can potentially allow injection of gases through their holes into the hollow core of the fiber. We have so far observed cavities with finesse of ~11 and Q factors of ~$4.5 times 10^5$, but much higher values should be achievable with improved fabrication procedures. We expect this device to enable development of new fiber lasers, enhanced gas spectroscopy, and studies of fundamental light-matter interactions and nonlinear optics.



قيم البحث

اقرأ أيضاً

73 - E. Janitz , M. Ruf , Y. Fontana 2017
Fiber-based optical microcavities exhibit high quality factor and low mode volume resonances that make them attractive for coupling light to individual atoms or other microscopic systems. Moreover, their low mass should lead to excellent mechanical r esponse up to high frequencies, opening the possibility for high bandwidth stabilization of the cavity length. Here, we demonstrate a locking bandwidth of 44 kHz achieved using a simple, compact design that exploits these properties. Owing to the simplicity of fiber feedthroughs and lack of free-space alignment, this design is inherently compatible with vacuum and cryogenic environments. We measure the transfer function of the feedback circuit (closed-loop) and the cavity mount itself (open-loop), which, combined with simulations of the mechanical response of our device, provide insight into underlying limitations of the design as well as further improvements that can be made.
We demonstrate non-perturbative coupling between a single self-assembled InGaAs quantum dot and an external fiber-mirror based microcavity. Our results extend the previous realizations of tunable microcavities while ensuring spatial and spectral over lap between the cavity-mode and the emitter by simultaneously allowing for deterministic charge control of the quantum dots. Using resonant spectroscopy, we show that the coupled quantum dot cavity system is at the onset of strong coupling, with a cooperativity parameter of 2. Our results constitute a milestone towards the realization of a high efficiency solid-state spin-photon interface.
Surface acoustic wave (SAW) resonators are critical components in wireless communications and many sensing applications. They have also recently emerged as subject of study in quantum acoustics at the single phonon level. Acoustic loss reduction and mode confinement are key performance factors in SAW resonators. Here we report the design and experimental realization of a high quality factor Fabry-Perot SAW resonators formed in between tapered phononic crystal mirrors patterned on a GaN-on-sapphire material platform . The fabricated SAW resonators are characterized by both electrical network analyzer and optical heterodyne vibrometer. We observed standing Rayleigh wave inside the cavity, with an intrinsic quality factor exceeding 13,000 at ambient conditions.
We experimentally realize a Fabry-Perot-type optical microresonator near the cesium D2 line wavelength based on a tapered optical fiber, equipped with two fiber Bragg gratings which enclose a sub-wavelength diameter waist. Owing to the very low taper losses, the finesse of the resonator reaches F = 86 while the on-resonance transmission is T = 11 %. The characteristics of our resonator fulfill the requirements of non-linear optics and cavity quantum electrodynamics in the strong coupling regime. In combination with its demonstrated ease of use and its advantageous mode geometry, it thus opens a realm of applications.
Open Fabry-Perot microcavities represent a promising route for achieving a quantum electrodynamics (cavity-QED) platform with diamond-based emitters. In particular, they offer the opportunity to introduce high purity, minimally fabricated material in to a tunable, high quality factor optical resonator. Here, we demonstrate a fiber-based microcavity incorporating a thick (> 10 {mu}m) diamond membrane with a finesse of 17,000, corresponding to a quality factor Q ~ $10^6$. Such minimally fabricated, thick samples can contain optically stable emitters similar to those found in bulk diamond. We observe modified microcavity spectra in the presence of the membrane, and develop analytic and numerical models to describe the effect of the membrane on cavity modes, including loss and coupling to higher-order transverse modes. We estimate that a Purcell enhancement of approximately 20 should be possible for emitters within the diamond in this device, and provide evidence that better diamond surface treatments and mirror coatings could increase this value to 200 in a realistic system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا