ﻻ يوجد ملخص باللغة العربية
Whereas magnetic frustration is typically associated with local-moment magnets in special geometric arrangements, here we show that SrCo$_{2}$As$_{2}$ is a candidate for frustrated itinerant magnetism. Using inelastic neutron scattering (INS), we find that antiferromagnetic (AF) spin fluctuations develop in the square Co layers of SrCo$_{2}$As$_{2}$ below $Tapprox100$ K centered at the stripe-type AF propagation vector of $(frac{1}{2},~frac{1}{2})$, and that their development is concomitant with a suppression of the uniform magnetic susceptibility determined via magnetization measurements. We interpret this switch in spectral weight as signaling a temperature-induced crossover from an instability towards FM ordering to an instability towards stripe-type AF ordering on cooling, and show results from Monte-Carlo simulations for a $J_{1}$-$J_{2}$ Heisenberg model that illustrate how the crossover develops as a function of the frustration ratio $-J_1/(2J_2)$. By putting our INS data on an absolute scale, we quantitatively compare them and our magnetization data to exact-diagonalization calculations for the $J_{1}$-$J_{2}$ model [N. Shannon et al., Eur. Phys. J. B 38, 599 (2004)], and show that the calculations predict a lower level of magnetic frustration than indicated by experiment. We trace this discrepancy to the large energy scale of the fluctuations ($J_{text{avg}}gtrsim75$ meV), which, in addition to the steep dispersion, is more characteristic of itinerant magnetism.
We have studied polycrystalline Yb4LiGe4, a ternary variant of the R5T4 family of layered compounds characterized by a very strong coupling between the magnetic and crystallographic degrees of freedom. The system is mixed valent, with non-magnetic Yb
We present a detailed investigation of the magnetic properties of complex vanadium phosphates M(VO)2(PO4)2 (M = Ca, Sr) by means of magnetization, specific heat, 31P NMR measurements, and band structure calculations. Experimental data evidence the pr
We report on the synthesis of a new $gamma$-phase of the spin $S$~=~$frac{3}{2}$ compound SrCo$_2$(PO$_4$)$_2$ together with a detailed structural, magnetic and thermodynamic properties. The $gamma$-phase of SrCo$_2$(PO$_4$)$_2$ crystallizes in a tri
Analysis of neutron diffraction, dc magnetization, ac magnetic susceptibility, heat capacity, and electrical resistivity for DyRuAsO in an applied magnetic field are presented at temperatures near and below those at which the structural distortion (T
We explore the spin states in the quantum spin chain compound SrCo$_{2}$V$_{2}$O$_{8}$ up to 14.9 T and down to 50 mK, using single-crystal neutron diffraction. Upon cooling in zero-field, antiferromagnetic (AFM) order of Neel type develops at $T_mat