ترغب بنشر مسار تعليمي؟ اضغط هنا

Synthesis and magnetic properties of spin-$frac{3}{2}$ $gamma$-phase of SrCo$_{2}$(PO$_{4}$)$_{2}$ antiferromagnet

135   0   0.0 ( 0 )
 نشر من قبل Arvind Yogi
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the synthesis of a new $gamma$-phase of the spin $S$~=~$frac{3}{2}$ compound SrCo$_2$(PO$_4$)$_2$ together with a detailed structural, magnetic and thermodynamic properties. The $gamma$-phase of SrCo$_2$(PO$_4$)$_2$ crystallizes in a triclinic crystal structure with the space group $Pbar{1}$. Susceptibility and specific heat measurements reveal that SrCo$_2$(PO$_4$)$_2$ orders antiferromagnetically below $T_{rm N}simeq 8.5$,K and the nature of ordering is three dimensional (3D). The magnetic isotherm at temperatures below $T_{rm N}$ shows a field-induced spin-flop transition, related to the magnetocrystalline anisotropy, at an applied field of $sim$~4.5~Tesla. Remarkably, heat capacity shows magnetic-field-induced transitions at $T_{rm N1}$ = 3.6 K and $T_{rm N2}$ = 7.4 K. The magnetic long range ordering (LRO) is also confirmed in both the Knight shift and spin-lattice relaxation rate ($1/T_{1}$) of the $^{31}$P-NMR measurements. However, below the LRO we have not detected any NMR signal due to faster relaxation. We have detected two structurally different phosphorous sites in $gamma$-phase of SrCo$_{2}$(PO$_{4}$)$_{2}$ and they shift differently with temperature.

قيم البحث

اقرأ أيضاً

177 - Lisi Li , Xunwu Hu , Zengjia Liu 2021
We report an investigation on structure and magnetic properties of the $S=3/2$ zigzag spin chain compound BaCoTe$_2$O$_7$. Neutron diffraction measurements reveal BaCoTe$_2$O$_7$ crystallizes in the noncentrosymmetric space group $Ama2$ with a canted $uparrowuparrowdownarrowdownarrow$ spin structure along the quasi-one-dimensional zigzag chain and a moment size of $1.89(2)mu_B$ at 2 K. Magnetic susceptibility and specific heat measurements yield an antiferromagnetic phase transition at $T_N=6.2$ K. A negative Curie-Weiss temperature $Theta_{CW}=-74.7(2)$ K and an empirical frustration parameter of $f=|Theta_text{CW}|/T_text{N}approx12$ is obtained from fitting the magnetic susceptibility, indicating antiferromagnetic interactions and strong magnetic frustration. By employing ultraviolet-visible absorption spectroscopy and first principles calculations, an indirect band gap of 2.68(2) eV is determined. We propose that the canted zigzag spin chain of BaCoTe$_2$O$_7$ may produce a change of the polarization via exchange striction mechanism.
We report neutron scattering and AC magnetic susceptibility measurements of the 2D spin-1/2 frustrated magnet BaCdVO(PO$_{4}$)$_{2}$. At temperatures well below $T_{sf N}approx 1K$, we show that only 34 % of the spin moment orders in an up-up-down-do wn strip structure. Dominant magnetic diffuse scattering and comparison to published $mu$sr measurements indicates that the remaining 66 % is fluctuating. This demonstrates the presence of strong frustration, associated with competing ferromagnetic and antiferromagnetic interactions, and points to a subtle ordering mechanism driven by magnon interactions. On applying magnetic field, we find that at $T=0.1$ K the magnetic order vanishes at 3.8 T, whereas magnetic saturation is reached only above 4.5 T. We argue that the putative high-field phase is a realization of the long-sought bond-spin-nematic state.
Here, we report the synthesis and magnetic properties of a Yb-based triangular-lattice compound LiYbS$_2$. At low temperatures, it features an effective spin-$frac{1}{2}$ state due to the combined effect of crystal electric field and spin orbit coupl ing. Magnetic susceptibility measurements and $^7$Li nuclear magnetic resonance experiments reveal the absence of magnetic long range ordering down to 2~K, which suggests a possible quantum spin liquid ground state. A dominant antiferromagnetic nearest neighbour exchange interaction $J/k_{rm B}simeq$ 5.3~K could be extracted form the magnetic susceptibility. The NMR linewidth analysis yields the coupling constant between the Li nuclei and Yb$^{3+}$ ions which was found to be purely dipolar in nature.
Magnetization, neutron diffraction and X-ray diffraction of Zn doped MnV2O4 as a function of temperature have been measured and the critical exponents and magnetocaloric effect of this system have been estimated. It is observed, that with increase in Zn substitution the noncollinear orientation of Mn spins with the V spins decreases which effectively leads to the decrease of structural transition temperature more rapidly than Curie temperature. It has been shown that the obtained values of {beta}, {gamma} and {delta} from different methods match very well. These values do not belong to universal class and the values are in between the 3D Heisenberg model and mean field interaction model. The magnetization data follow the scaling equation and collapse into two branches indicating that the calculated critical exponents and critical temperature are unambiguous and intrinsic to the system. The observed double peaks in magneto-caloric curve of Mn0.95Zn0.05V2O4 is due to the strong distortion of VO6 octahedra.
134 - L. Shen , E. Campillo , E. Young 2019
$gamma$-CoV$_{2}$O$_{6}$ is a quasi one-dimensional spin-$frac{3}{2}$ magnet that possesses two distinct magnetic orders in the ground state with modulation vectors $k_mathrm{1}$ = ($frac{1}{2}$, 0, 0) and $k_mathrm{2}$ = ($frac{1}{4}$, 0, -$frac{1}{ 4}$), respectively. Here, we use muon spin relaxation and rotation to reveal the thermodynamics of the magnetic phase separation in this compound. In the paramagnetic (PM) region, short-range correlated spin clusters emerge at $T_mathrm{m}$ $simeq$ 26 K at the $it{partial}$ expense of the PM volume. Upon further cooling, we show that these emergent clusters become spatially coherent at $T_mathrm{{N2}}$ = 7.5 K and eventually form the $k_mathrm{2}$ order at $T^{star}$ = 5.6 K, while the remaining PM spins are driven into the $k_mathrm{1}$ state at $T_mathrm{{N1}}$ = 6.6 K. These results stress magnetic microphase inhomogeneity as a thermodynamic precursor for the ground state phase separation in weakly coupled spin-$frac{3}{2}$ chains.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا