ﻻ يوجد ملخص باللغة العربية
One special interest for the industrial development of Hall thruster is characterizing the anomalous cross-field electron transport observed after the channel exit. Since the ionization efficiency is more than 90%, the neutral atom density in that domain is so low that the electron collisions cannot explain the high electron flux observed experimentally. Indeed this is 100 times higher than the collisional transport. In Hall thruster geometry, as ions are not magnetized the electric and magnetic field configuration creates a huge difference in drift velocity between electrons and ions, which generates electron cyclotron drift instability or $vec E times vec B$ electron drift instability. Here we are focusing on collision-less chaotic transport of electrons by those unstable modes generated by $vec E times vec B$ drift instability. We found that in presence of these electrostatic modes electron dynamics become chaotic. They gain energy from the background waves which increases electron temperature along perpendicular direction by a significant amount, $T_{rm perp}/T_{rm parallel}sim 4$, and a significant amount of crossfield electron transport is observed along the axial direction.
We study axisymmetric mean-field dynamo models containing differential rotation, the $alpha$ effect and the additional turbulent induction effects. The additional effects result from the combined action of rotation and an inhomogeneity of the large-s
Polarization transfer in the 4He(e,ep)3H reaction at a Q^2 of 0.4 (GeV/c)^2 was measured at the Mainz Microtron MAMI. The ratio of the transverse to the longitudinal polarization components of the ejected protons was compared with the same ratio for
The effects of multi-photon-exchange and other higher-order QED corrections on elastic electron-proton scattering have been a subject of high experimental and theoretical interest since the polarization transfer measurements of the proton electromagn
Beam-recoil transferred polarizations for the exclusive $vec{e}p to eK^+ vec{Lambda},vec{Sigma}^0$ reactions have been measured using the CLAS spectrometer at Jefferson Laboratory. New measurements have been completed at beam energies of 4.261 and 5.
We report the first precision measurement of the proton electric to magnetic form factor ratio from spin-dependent elastic scattering of longitudinally polarized electrons from a polarized hydrogen internal gas target. The measurement was performed a