ﻻ يوجد ملخص باللغة العربية
We study axisymmetric mean-field dynamo models containing differential rotation, the $alpha$ effect and the additional turbulent induction effects. The additional effects result from the combined action of rotation and an inhomogeneity of the large-scale magnetic field. The best known of them is the $vec{Omega}timesvec{J}$ effect. We also include anisotropic diffusion and a new dynamo term which is of third order in the rotation vector $vec{Omega}$ The model calculations are carried out using the rotation profile of the Sun as obtained from helioseismic measurements and radial profiles of other quantities according to a standard model of the solar interior. In addition, we consider a dynamo model for a full sphere which is solely based on the joint induction effects of rotation and an inhomogeneity of the large-scale magnetic field, without differential rotation and the $alpha$ effect (a $delta^{2}$ dynamo model). This kind of dynamo model may be relevant for fully convective stars.
One special interest for the industrial development of Hall thruster is characterizing the anomalous cross-field electron transport observed after the channel exit. Since the ionization efficiency is more than 90%, the neutral atom density in that do
The spin correlation coefficent combinations A_{xx}+A_{yy} and A_{xx}-A_{yy}, the spin correlation coefficients A_{xz} and A_{zz}, and the analyzing power were measured for vec p vec p --> d pi^+ between center-of-mass angles 25 deg leq theta leq 65
A first measurement of longitudinal as well as transverse spin correlation coefficients for the reaction $vec{p}vec{p}to pnpi^+$ was made using a polarized proton target and a polarized proton beam. We report kinematically complete measurements for t
Beam-recoil transferred polarizations for the exclusive $vec{e}p to eK^+ vec{Lambda},vec{Sigma}^0$ reactions have been measured using the CLAS spectrometer at Jefferson Laboratory. New measurements have been completed at beam energies of 4.261 and 5.
Polarization transfer in the 4He(e,ep)3H reaction at a Q^2 of 0.4 (GeV/c)^2 was measured at the Mainz Microtron MAMI. The ratio of the transverse to the longitudinal polarization components of the ejected protons was compared with the same ratio for