ترغب بنشر مسار تعليمي؟ اضغط هنا

Impact of DCSB and dynamical diquark correlations on proton GPDs

203   0   0.0 ( 0 )
 نشر من قبل Adam Freese
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We calculate the leading-twist, helicity-independent generalized parton distributions (GPDs) of the proton, at finite skewness, in the Nambu--Jona-Lasinio (NJL) model of quantum chomodynamics (QCD). The NJL model reproduces low-energy characteristics of QCD, including dynamical chiral symmetry breaking (DCSB). The proton bound-state amplitude is solved for using the Faddeev equation in a quark-diquark approximation, including both dynamical scalar and axial vector diquarks. GPDs are calculated using a dressed non-local correlator, consistent with DCSB, which is obtained by solving a Bethe-Salpeter equation. The model and approximations used observe Lorentz covariance, and as a consequence the GPDs obey polynomiality sum rules. Extractions of electromagnetic and gravitational form factors are performed. We find a D-term of $-1.08$ when the non-local correlator is properly dressed, and $0.85$ when the bare correlator is used instead, suggesting that within this framework proton stability requires the constituent quarks to be dressed consistently with DCSB. We also find that the anomalous gravitomagnetic vanishes, as required by Poincar{e} symmetry.



قيم البحث

اقرأ أيضاً

144 - Adam Freese , Ian C. Cloet 2020
We calculate the leading-twist helicity-dependent generalized parton distributions (GPDs) of the proton at finite skewness in the Nambu--Jona-Lasinio (NJL) model of quantum chromodynamics (QCD). From these (and previously calculated helicity-independ ent GPDs) we obtain the spin decomposition of the proton, including predictions for quark intrinsic spin and orbital angular momentum. The inclusion of multiple species of diquarks is found to have a significant effect on the flavor decomposition, and resolving the internal structure of these dynamical diquark correlations proves essential for the mechanical stability of the proton. At a scale of $Q^2=4,$GeV$^2$ we find that the up and down quarks carry an intrinsic spin and orbital angular momentum of $S_u=0.534$, $S_d=-0.214$, $L_u=-0.189$, and $L_d=0.210$, whereas the gluons have a total angular momentum of $J_g=0.151$. The down quark is therefore found to carry almost no total angular momentum due to cancellations between spin and orbital contributions. Comparisons are made between these spin decomposition results and lattice QCD calculations.
The last decade has seen a marked shift in how the internal structure of hadrons is understood. Modern experimental facilities, new theoretical techniques for the continuum bound-state problem and progress with lattice-regularised QCD have provided s trong indications that soft quark+quark (diquark) correlations play a crucial role in hadron physics. For example, theory indicates that the appearance of such correlations is a necessary consequence of dynamical chiral symmetry breaking, viz. a corollary of emergent hadronic mass that is responsible for almost all visible mass in the universe; experiment has uncovered signals for such correlations in the flavour-separation of the protons electromagnetic form factors; and phenomenology suggests that diquark correlations might be critical to the formation of exotic tetra- and penta-quark hadrons. A broad spectrum of such information is evaluated herein, with a view to consolidating the facts and therefrom moving toward a coherent, unified picture of hadron structure and the role that diquark correlations might play.
91 - Marcus Bluhm 2016
The non-monotonic beam energy dependence of the higher cumulants of net-proton fluctuations is a widely studied signature of the conjectured presence of a critical point in the QCD phase diagram. In this work we study the effect of resonance decays o n critical fluctuations. We show that resonance effects reduce the signatures of critical fluctuations, but that for reasonable parameter choices critical effects in the net-proton cumulants survive. The relative role of resonance decays has a weak dependence on the order of the cumulants studied with a slightly stronger suppression of critical effects for higher-order cumulants.
124 - Salvatore Fazio 2012
The feasibility for a measurement of the exclusive production of a real photon, a process although known as Deeply Virtual Compton Scattering (DVCS) at an Electron Ion Collider (EIC) has been explored. DVCS is universally believed to be a golden meas urement toward the determination of the Generalized Parton Distribution (GPDs) functions. The high luminosity of the machine, expected in the order of 10^34 cm^-2 s^-1 at the highest center-of-mass energy, together with the large resolution and rapidity acceptance of a newly designed dedicated detector, will open a opportunity for very high precision measurements of DVCS, and thus for the determination of GPDs, providing an important tool toward a 2+1 dimensional picture of the internal structure of the proton and nuclei.
We provide a comprehensive comparison of W/Z vector boson production data in proton-lead and lead-lead collisions at the LHC with predictions obtained using the nCTEQ15 PDFs. We identify the measurements which have the largest potential impact on the PDFs, and estimate the effect of including these data using a Monte Carlo reweighting method. We find this data set can provide information about both the nuclear corrections and the heavy flavor (strange) PDF components. As the proton flavor determination is dependent on nuclear corrections (from heavy target DIS, for example), this information can also help improve the proton PDFs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا