ترغب بنشر مسار تعليمي؟ اضغط هنا

GPDs at an EIC

124   0   0.0 ( 0 )
 نشر من قبل Salvatore Fazio
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English
 تأليف Salvatore Fazio




اسأل ChatGPT حول البحث

The feasibility for a measurement of the exclusive production of a real photon, a process although known as Deeply Virtual Compton Scattering (DVCS) at an Electron Ion Collider (EIC) has been explored. DVCS is universally believed to be a golden measurement toward the determination of the Generalized Parton Distribution (GPDs) functions. The high luminosity of the machine, expected in the order of 10^34 cm^-2 s^-1 at the highest center-of-mass energy, together with the large resolution and rapidity acceptance of a newly designed dedicated detector, will open a opportunity for very high precision measurements of DVCS, and thus for the determination of GPDs, providing an important tool toward a 2+1 dimensional picture of the internal structure of the proton and nuclei.



قيم البحث

اقرأ أيضاً

We discuss two collider processes which combine a diffractively produced $rho$ meson separated by a large rapidity gap from a hard exclusive scattering of a Pomeron on a nucleon, giving rise to a lepton pair or to a second meson. These two processes probe the nucleon quark content described by generalized parton distributions in a very specific way.
A simulation study of measurements of neutral current structure functions of the nucleon at the future high-energy and high-luminosity polarized electron-ion collider (EIC) is presented. A new series of $gamma-Z$ interference structure functions, $F_ 1^{gamma Z}$, $F_3^{gamma Z}$, $g_1^{gamma Z}$, $g_5^{gamma Z}$ become accessible via parity-violating asymmetries in polarized electron-nucleon deep inelastic scattering (DIS). Within the context of the quark-parton model, they provide a unique and, in some cases, yet-unmeasured combination of unpolarized and polarized parton distribution functions. The uncertainty projections for these structure functions using electron-proton collisions are considered for various EIC beam energy configurations. Also presented are uncertainty projections for measurements of the weak mixing angle $sin^2 theta_W$ using electron-deuteron collisions which cover a much higher $Q^2$ than that is accessible in fixed target measurements. QED and QCD radiative corrections and effects of detector smearing are included with the calculations.
78 - V. Guzey , M. Klasen 2020
We present a first, detailed study of diffractive dijet photoproduction at the recently approved electron-ion collider (EIC) at BNL. Apart from establishing the kinematic reaches for various beam types, energies and kinematic cuts, we make precise pr edictions at next-to-leading order (NLO) of QCD in the most important kinematic variables. We show that the EIC will provide new and more precise information on the diffractive parton density functions (PDFs) in the pomeron than previously obtained at HERA, illuminate the still disputed mechanism of global vs. only resolved-photon factorization breaking, and provide access to a completely new quantity, i.e. nuclear diffractive PDFs.
We present a comprehensive analysis of the potential sensitivity of the Electron-Ion Collider (EIC) to charged lepton flavor violation (CLFV) in the channel $epto tau X$, within the model-independent framework of the Standard Model Effective Field Th eory (SMEFT). We compute the relevant cross sections to leading order in QCD and electroweak corrections and perform simulations of signal and SM background events in various $tau$ decay channels, suggesting simple cuts to enhance the associated estimated efficiencies. To assess the discovery potential of the EIC in $tau$-$e$ transitions, we study the sensitivity of other probes of this physics across a broad range of energy scales, from $pp to e tau X$ at the Large Hadron Collider to decays of $B$ mesons and $tau$ leptons, such as $tau to e gamma$, $tau to e ell^+ ell^-$, and crucially the hadronic modes $tau to e Y$ with $Y in { pi, K, pi pi, K pi, ...}$. We find that electroweak dipole and four-fermion semi-leptonic operators involving light quarks are already strongly constrained by $tau$ decays, while operators involving the $c$ and $b$ quarks present more promising discovery potential for the EIC. An analysis of three models of leptoquarks confirms the expectations based on the SMEFT results. We also identify future directions needed to maximize the reach of the EIC in CLFV searches: these include an optimization of the $tau$ tagger in hadronic channels, an exploration of background suppression through tagging $b$ and $c$ jets in the final state, and a global fit by turning on all SMEFT couplings, which will likely reveal new discovery windows for the EIC.
A future Electron-Ion Collider (EIC) will deliver luminosities of $10^{33} - 10^{34}$ cm$^{-2}$s$^{-1}$ for collisions of polarized electrons and protons and heavy ions over a wide range of center-of-mass energies (40 $mathrm{GeV}$ to 145 $mathrm{GeV }$). One of its promising physics programs is to study the partonic structure of quasi-real photons. Measuring di-jet in photoproduction events, one can effectively access the underlying parton dynamics of the photons through the selection of the resolved photon processes. In this paper, we discuss the feasibility of tagging resolved photon processes and measuring the di-jet cross section as a function of jet transverse momentum in ranges of $x_{gamma}^{rec}$ at an EIC. These studies show that parton distributions in the photon can be extracted at an EIC.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا