ﻻ يوجد ملخص باللغة العربية
As part of the National Science Foundation funded Gemini in the Era of MultiMessenger Astronomy (GEMMA) program, Gemini Observatory is developing GNAO, a widefield adaptive optics (AO) facility for Gemini-North on Maunakea, the only 8m-class open-access telescope available to the US astronomers in the northern hemisphere. GNAO will provide the user community with a queue-operated Multi-Conjugate AO (MCAO) system, enabling a wide range of innovative solar system, Galactic, and extragalactic science with a particular focus on synergies with JWST in the area of time-domain astronomy. The GNAO effort builds on institutional investment and experience with the more limited block-scheduled Gemini Multi-Conjugate System (GeMS), commissioned at Gemini South in 2013. The project involves close partnerships with the community through the recently established Gemini AO Working Group and the GNAO Science Team, as well as external instrument teams. The modular design of GNAO will enable a planned upgrade to a Ground Layer AO (GLAO) mode when combined with an Adaptive Secondary Mirror (ASM). By enhancing the natural seeing by an expected factor of two, GLAO will vastly improve Gemini Norths observing efficiency for seeing-limited instruments and strengthen its survey capabilities for multi-messenger astronomy.
We present the integration status for `imaka, the ground-layer adaptive optics (GLAO) system on the University of Hawaii 2.2-meter telescope on Maunakea, Hawaii. This wide-field GLAO pathfinder system exploits Maunakeas highly confined ground layer a
Recent advances in adaptive optics (AO) have led to the implementation of wide field-of-view AO systems. A number of wide-field AO systems are also planned for the forthcoming Extremely Large Telescopes. Such systems have multiple wavefront sensors o
Here we describe a simple, efficient, and most importantly fully operational point-spread-function(PSF)-reconstruction approach for laser-assisted ground layer adaptive optics (GLAO) in the frame of the Multi Unit Spectroscopic Explorer (MUSE) Wide F
A new high-order adaptive optics system is now being commissioned at the Lick Observatory Shane 3-meter telescope in California. This system uses a high return efficiency sodium beacon and a combination of low and high-order deformable mirrors to ach
We use spatio-temporal cross-correlations of slopes from five Shack-Hartmann wavefront sensors to analyse the temporal evolution of the atmospheric turbulence layers at different altitudes. The focus is on the verification of the frozen flow assumpti