ﻻ يوجد ملخص باللغة العربية
We study the Brownian motion of an assembly of mobile inclusions embedded in a fluid membrane. The motion includes the dispersal of the assembly, accompanied by the diffusion of its center of mass. Usually, the former process is much faster than the latter, since the diffusion coefficient of the center of mass is inversely proportional to the number of particles. However, in the case of membrane inclusions, we find that the two processes occur on the same time scale, thus prolonging significantly the lifetime of the assembly as a collectively moving object. This effect is caused by the quasi-two-dimensional membrane flows, which couple the motions even of the most remote inclusions in the assembly. The same correlations also cause the diffusion coefficient of the center of mass to decay slowly with time, resulting in weak sub-diffusion. We confirm our analytical results by Brownian dynamics simulations with flow-mediated correlations. The effect reported here should have implications for the stability of nano-scale membrane heterogeneities.
Collective motion is found in various animal systems, active suspensions and robotic or virtual agents. This is often understood using high level models that directly encode selected empirical features, such as co-alignment and cohesion. Can these fe
Locomotion and transport of microorganisms in fluids is an essential aspect of life. Search for food, orientation toward light, spreading of off-spring, and the formation of colonies are only possible due to locomotion. Swimming at the microscale occ
We characterize cell motion in experiments and show that the transition to collective motion in colonies of gliding bacterial cells confined to a monolayer appears through the organization of cells into larger moving clusters. Collective motion by no
Membrane targeting domains play crucial roles in the association of signalling molecules to the plasma membrane. For most peripheral proteins, the protein-to-membrane interaction is transient. After proteins dissociate from the membrane they have bee
We study the force generation by a set of parallel actin filaments growing against an elastic membrane. The elastic membrane tries to stay flat and any deformation from this flat state, either caused by thermal fluctuations or due to protrusive polym