ترغب بنشر مسار تعليمي؟ اضغط هنا

Constraining higher order gravities with subregion duality

69   0   0.0 ( 0 )
 نشر من قبل Juan Pedraza
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In higher derivative theories, gravity can travel slower or faster than light. With this feature in mind, we revisit the construction of the causal and entanglement wedges in this type of theories, and argue that they must be constructed using the fastest mode instead of null rays. We show that the property of causal wedge inclusion, i.e., the fact that the causal wedge must be contained in the entanglement wedge, leads to more stringent constraints on the couplings than those imposed by hyperbolicity and boundary causality. Our results imply that the full power of subregion-subregion duality could lead to the same conclusions previously obtained based on high energy graviton scattering. We illustrate our findings with a systematic analysis in Gauss-Bonnet gravity.

قيم البحث

اقرأ أيضاً

We present a higher order generalisation of the clockwork mechanism starting from an underlying non-linear multigravity theory with a single scale and nearest neighbour ghost-free interactions. Without introducing any hierarchies in the underlying po tential, this admits a family of Minkowski vacua around which massless graviton fluctuations couple to matter exponentially more weakly than the heavy modes. Although multi-diffeomorphisms are broken to the diagonal subgroup in our theory, an asymmetric distribution of conformal factors in the background vacua translates this diagonal symmetry into an asymmetric shift of the graviton gears. In particular we present a TeV scale multigravity model with ${cal O}(10)$ sites that contains a massless mode whose coupling to matter is Planckian, and a tower of massive modes starting at a TeV mass range and with TeV strength couplings. This suggests a possible application to the hierarchy problem as well as a candidate for dark matter.
We study boundary conditions for 3-dimensional higher spin gravity that admit asymptotic symmetry algebras expected of 2-dimensional induced higher spin theories in the light cone gauge. For the higher spin theory based on sl(3, R) plus sl(3,R) algeb ra, our boundary conditions give rise to one copy of classical W3 and a copy of sl(3,R) or su(1,2) Kac-Moody symmetry algebra. We propose that the higher spin theories with these boundary conditions describe appropriate chiral induced W-gravity theories on the boundary. We also consider boundary conditions of spin-3 higher spin gravity that admit u(1) plus u(1) current algebra.
91 - M. Cvetic , Xing-Hui Feng , H. Lu 2016
For appropriate choices of the coupling constants, the equations of motion of Lovelock gravities up to order n in the Riemann tensor can be factorized such that the theories admits a single (A)dS vacuum. In this paper we construct two classes of exac t rotating metrics in such critical Lovelock gravities of order n in d=2n+1 dimensions. In one class, the n angular momenta in the n orthogonal spatial 2-planes are equal, and hence the metric is of cohomogeneity one. We construct these metrics in a Kerr-Schild form, but they can then be recast in terms of Boyer-Lindquist coordinates. The other class involves metrics with only a single non-vanishing angular momentum. Again we construct them in a Kerr-Schild form, but in this case it does not seem to be possible to recast them in Boyer-Lindquist form. Both classes of solutions have naked curvature singularities, arising because of the over rotation of the configurations.
We construct explicit solutions for the linearized massive and massless spin-2, vector and scalar modes around the AdS spacetimes in diverse dimensions. These modes may arise in extended (super)gravities with higher curvature terms in general dimensi ons. Log modes in critical gravities can also be straightforwardly deduced. We analyze the properties of these modes and obtain the tachyon-free condition, which allows negative mass square for these modes. However, such modes may not satisfy the standard AdS boundary condition and can be truncated out from the spectrum.
Pure de Sitter, anti de Sitter, and orthogonal gauge theories in four-dimensional Euclidean spacetime are studied. It is shown that, if the theory is asymptotically free and a dynamical mass is generated, then an effective geometry may be induced and a gravity theory emerges. The asymptotic freedom and the running of the mass might account for an Inonu-Wigner contraction which induces a breaking of the gauge group to the Lorentz group, while the mass itself is responsible for the coset sector of the gauge field to be identified with the effective vierbein. Furthermore, the resulting local isometries are Lorentzian for the anti de Sitter group and Euclidean for the de Sitter and orthogonal groups.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا