ترغب بنشر مسار تعليمي؟ اضغط هنا

Linearized Modes in Extended and Critical Gravities

126   0   0.0 ( 0 )
 نشر من قبل Hong Lu
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We construct explicit solutions for the linearized massive and massless spin-2, vector and scalar modes around the AdS spacetimes in diverse dimensions. These modes may arise in extended (super)gravities with higher curvature terms in general dimensions. Log modes in critical gravities can also be straightforwardly deduced. We analyze the properties of these modes and obtain the tachyon-free condition, which allows negative mass square for these modes. However, such modes may not satisfy the standard AdS boundary condition and can be truncated out from the spectrum.



قيم البحث

اقرأ أيضاً

91 - M. Cvetic , Xing-Hui Feng , H. Lu 2016
For appropriate choices of the coupling constants, the equations of motion of Lovelock gravities up to order n in the Riemann tensor can be factorized such that the theories admits a single (A)dS vacuum. In this paper we construct two classes of exac t rotating metrics in such critical Lovelock gravities of order n in d=2n+1 dimensions. In one class, the n angular momenta in the n orthogonal spatial 2-planes are equal, and hence the metric is of cohomogeneity one. We construct these metrics in a Kerr-Schild form, but they can then be recast in terms of Boyer-Lindquist coordinates. The other class involves metrics with only a single non-vanishing angular momentum. Again we construct them in a Kerr-Schild form, but in this case it does not seem to be possible to recast them in Boyer-Lindquist form. Both classes of solutions have naked curvature singularities, arising because of the over rotation of the configurations.
Pure de Sitter, anti de Sitter, and orthogonal gauge theories in four-dimensional Euclidean spacetime are studied. It is shown that, if the theory is asymptotically free and a dynamical mass is generated, then an effective geometry may be induced and a gravity theory emerges. The asymptotic freedom and the running of the mass might account for an Inonu-Wigner contraction which induces a breaking of the gauge group to the Lorentz group, while the mass itself is responsible for the coset sector of the gauge field to be identified with the effective vierbein. Furthermore, the resulting local isometries are Lorentzian for the anti de Sitter group and Euclidean for the de Sitter and orthogonal groups.
We study boundary conditions for 3-dimensional higher spin gravity that admit asymptotic symmetry algebras expected of 2-dimensional induced higher spin theories in the light cone gauge. For the higher spin theory based on sl(3, R) plus sl(3,R) algeb ra, our boundary conditions give rise to one copy of classical W3 and a copy of sl(3,R) or su(1,2) Kac-Moody symmetry algebra. We propose that the higher spin theories with these boundary conditions describe appropriate chiral induced W-gravity theories on the boundary. We also consider boundary conditions of spin-3 higher spin gravity that admit u(1) plus u(1) current algebra.
We study the behavior of quasinormal modes in a top-down holographic dual corresponding to a strongly coupled $mathcal{N} = 4$ super Yang-Mills plasma charged under a $U(1)$ subgroup of the global $SU(4)$ R-symmetry. In particular, we analyze the spe ctra of quasinormal modes in the external scalar and vector diffusion channels near the critical point and obtain the behavior of the characteristic equilibration times of the plasma as the system evolves towards the critical point of its phase diagram. Except close to the critical point, we observe that by increasing the chemical potential one generally increases the damping rate of the quasinormal modes, which leads to a reduction of the characteristic equilibration times in the dual strongly coupled plasma. However, as one approaches the critical point the typical equilibration time (as estimated from the lowest non-hydrodynamic quasinormal mode frequency) increases, although remaining finite, while its derivative with respect to the chemical potential diverges with exponent -1/2. We also find a purely imaginary non-hydrodynamical mode in the vector diffusion channel at nonzero chemical potential which dictates the equilibration time in this channel near the critical point.
In higher derivative theories, gravity can travel slower or faster than light. With this feature in mind, we revisit the construction of the causal and entanglement wedges in this type of theories, and argue that they must be constructed using the fa stest mode instead of null rays. We show that the property of causal wedge inclusion, i.e., the fact that the causal wedge must be contained in the entanglement wedge, leads to more stringent constraints on the couplings than those imposed by hyperbolicity and boundary causality. Our results imply that the full power of subregion-subregion duality could lead to the same conclusions previously obtained based on high energy graviton scattering. We illustrate our findings with a systematic analysis in Gauss-Bonnet gravity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا