ترغب بنشر مسار تعليمي؟ اضغط هنا

Understanding Magic Numbers in Neutron-Rich Nuclei by Tensor Blocking Mechanism

67   0   0.0 ( 0 )
 نشر من قبل Isao Tanihata
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A new paradigm for nuclear structure that includes blocking effects of tensor interactions is proposed. All of the recently discovered magic numbers (N=6, 14, 16, 32 and 34) in neutron-rich nuclei can be explained by the blocking effects. A large amount of binding energy is gained by high-momentum correlated pairs of nucleons produced by the tensor interaction. Such tensor correlations strongly depend on the configuration space available for exciting nucleons to 2p-2h states. When additional neutrons occupy a new orbital, the previously available configuration may be lost, resulting in a sudden loss of binding energy otherwise gained by the 2p-2h excitations. Such tensor blocking effects enlarge the energy gaps at all observed new magic numbers. Tensor blocking also explains consistently the observed peculiar configurations of neutron-rich nuclei at the borders of shells.



قيم البحث

اقرأ أيضاً

Pauli blocking is carefully investigated for the processes of $NN rightarrow N Delta$ and $Delta rightarrow N pi$ in heavy-ion collisions, aiming at a more precise prediction of the $pi^-/ pi^+$ ratio which is an important observable to constrain the high-density symmetry energy. We use the AMD+JAM approach, which combines the antisymmetrized molecular dynamics for the time evolution of nucleons and the JAM model to treat processes for $Delta$ resonances and pions. As is known in general transport-code simulations, it is difficult to treat Pauli blocking very precisely due to unphysical fluctuations and additional smearing of the phase-space distribution function, when Pauli blocking is treated in the standard method of JAM. We propose an improved method in AMD+JAM to use the Wigner function precisely calculated in AMD as the blocking probability. Different Pauli blocking methods are compared in heavy-ion collisions of neutron-rich nuclei, ${}^{132}mathrm{Sn}+{}^{124}mathrm{Sn}$, at 270 MeV/nucleon. With the more accurate method, we find that Pauli blocking is stronger, in particular for the neutron in the final state in $NN rightarrow N Delta$ and $ Delta to Npi$, compared to the case with a proton in the final state. Consequently, the $pi^-/pi^+$ ratio becomes higher when the Pauli blocking is improved, the effect of which is found to be comparable to the sensitivity to the high-density symmetry energy.
We calculate the ground, first intrinsic excited states and density distribution for neutron-rich thorium and uranium isotopes, within the framework of relativistic mean field(RMF) approach using axially deformed basis. The total nucleon densities ar e calculated, from which the cluster-structures inside the parent nuclei are determined. The possible modes of decay, like {alpha}-decay and b{eta} -decay are analyzed. We find the neutron-rich isotopes are stable against {alpha}-decay, however they are very much unstable against b{eta} -decay. The life time of these nuclei predicted to be tens of second against b{eta} -decay.
118 - Bao-An Li , Wen-Jie Xie 2021
Both the incompressibility Ka of a finite nucleus of mass A and that ($K_{infty}$) of infinite nuclear matter are fundamentally important for many critical issues in nuclear physics and astrophysics. While some consensus has been reached about the $K _{infty}$, accurate theoretical predictions and experimental extractions of $K_{tau}$ characterizing the isospin dependence of Ka have been very difficult. We propose a differential approach to extract the Kt and Ki independently from the Ka data of any two nuclei in a given isotope chain. Applying this new method to the Ka data from isoscalar giant monopole resonances (ISGMR) in even-even Pb, Sn, Cd and Ca isotopes taken by U. Garg {it et al.} at the Research Center for Nuclear Physics (RCNP), Osaka University, Japan, we find that the $^{106}$Cd-$^{116}$Cd and $^{112}$Sn-$^{124}$Sn pairs having the largest differences in isospin asymmetries in their respective isotope chains measured so far provide consistently the most accurate up-to-date Kt value of $K_{tau}=-616pm 59$ MeV and $K_{tau}=-623pm 86$ MeV, respectively, largely independent of the remaining uncertainties of the surface and Coulomb terms in expanding the $K_{rm A}$, while the $K_{infty}$ values extracted from different isotopes chains are all well within the current uncertainty range of the community consensus for $K_{infty}$. Moreover, the size and origin of the Soft Sn Puzzle is studied with respect to the Stiff Pb Phenomenon. It is found that the latter is favored due to a much larger (by $sim 380$ MeV) Kt for Pb isotopes than for Sn isotopes, while the Ki from analyzing the Ka data of Sn isotopes is only about 5 MeV less than that from analyzing the Pb data.
115 - F. Minato , C.L. Bai 2013
Effect of the tensor force on $beta$?-decay is studied in the framework of the proton-neutron random-phase-approximation (RPA) with the Skyrme force. The investigation is performed for even-even semi-magic and magic nuclei, $^{34}$Si, $^{68}$, $^{78} $Ni and $^{132}$Sn. The tensor correlation induces strong impact on low-lying Gamow-Teller state. In particular, it improves the ?$beta$-decay half-lives. $Q$ and $ft$ values are also investigated and compared with experimental data.
182 - Yifei Niu , Gianluca Colo , 2015
The scope of the paper is to apply a state-of-the-art beyond mean-field model to the description of the Gamow-Teller response in atomic nuclei. This topic recently attracted considerable renewed interest, due, in particular, to the possibility of per forming experiments in unstable nuclei. We study the cases of $^{48}$Ca, $^{78}$Ni, $^{132}$Sn and $^{208}$Pb. Our model is based on a fully self-consistent Skyrme Hartree-Fock plus random phase approximation. The same Skyrme interaction is used to calculate the coupling between particles and vibrations, which leads to the mixing of the Gamow-Teller resonance with a set of doorway states and to its fragmentation. We compare our results with available experimental data. The microscopic coupling mechanism is also discussed in some detail.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا